为Web文档集合提供更好的实体解析技术

Surender Reddy Yerva, Z. Miklós, K. Aberer
{"title":"为Web文档集合提供更好的实体解析技术","authors":"Surender Reddy Yerva, Z. Miklós, K. Aberer","doi":"10.1109/ICDEW.2010.5452698","DOIUrl":null,"url":null,"abstract":"As person names are non-unique, the same name on different Web pages might or might not refer to the same real-world person. This entity identification problem is one of the most challenging issues in realizing the Semantic Web or entity-oriented search. We address this disambiguation problem, which is very similar to the entity resolution problem studied in relational databases, however there are also several differences. Most importantly Web pages often only contain partial or incomplete information about the persons, moreover the available information is very heterogeneous, thus we are only able to obtain some uncertain evidence about whether two names refer to the same person using similarity functions. These similarity functions capture some aspects of the similarities between Web-pages, where the names occur, thus they perform very differently for the different names. We analyze some data engineering techniques to cope with the limited accuracy of the similarity functions and to combine multiple functions. Even with our simple techniques we could demonstrate systematic performance improvements and produce comparable results to state-of-the-art methods.","PeriodicalId":442345,"journal":{"name":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Towards better entity resolution techniques for Web document collections\",\"authors\":\"Surender Reddy Yerva, Z. Miklós, K. Aberer\",\"doi\":\"10.1109/ICDEW.2010.5452698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As person names are non-unique, the same name on different Web pages might or might not refer to the same real-world person. This entity identification problem is one of the most challenging issues in realizing the Semantic Web or entity-oriented search. We address this disambiguation problem, which is very similar to the entity resolution problem studied in relational databases, however there are also several differences. Most importantly Web pages often only contain partial or incomplete information about the persons, moreover the available information is very heterogeneous, thus we are only able to obtain some uncertain evidence about whether two names refer to the same person using similarity functions. These similarity functions capture some aspects of the similarities between Web-pages, where the names occur, thus they perform very differently for the different names. We analyze some data engineering techniques to cope with the limited accuracy of the similarity functions and to combine multiple functions. Even with our simple techniques we could demonstrate systematic performance improvements and produce comparable results to state-of-the-art methods.\",\"PeriodicalId\":442345,\"journal\":{\"name\":\"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDEW.2010.5452698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2010.5452698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

由于人名是非惟一的,因此不同Web页面上的相同姓名可能指的是真实世界中的同一个人,也可能不是。实体识别问题是实现语义网或面向实体搜索中最具挑战性的问题之一。我们解决了这个消歧问题,它与关系数据库中研究的实体解析问题非常相似,但也有一些不同之处。最重要的是,Web页面通常只包含有关人物的部分或不完整的信息,而且可用的信息非常异构,因此我们只能使用相似度函数来获得关于两个名字是否指同一个人的一些不确定证据。这些相似性函数捕获了出现名称的web页面之间相似性的某些方面,因此它们对不同名称的执行非常不同。分析了一些数据工程技术,以解决相似函数精度有限的问题,并将多个函数组合在一起。即使使用我们简单的技术,我们也可以展示系统的性能改进,并产生与最先进的方法相当的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards better entity resolution techniques for Web document collections
As person names are non-unique, the same name on different Web pages might or might not refer to the same real-world person. This entity identification problem is one of the most challenging issues in realizing the Semantic Web or entity-oriented search. We address this disambiguation problem, which is very similar to the entity resolution problem studied in relational databases, however there are also several differences. Most importantly Web pages often only contain partial or incomplete information about the persons, moreover the available information is very heterogeneous, thus we are only able to obtain some uncertain evidence about whether two names refer to the same person using similarity functions. These similarity functions capture some aspects of the similarities between Web-pages, where the names occur, thus they perform very differently for the different names. We analyze some data engineering techniques to cope with the limited accuracy of the similarity functions and to combine multiple functions. Even with our simple techniques we could demonstrate systematic performance improvements and produce comparable results to state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast algorithms for time series mining Ontology alignment argumentation with mutual dependency between arguments and mappings A first step towards integration independence Towards enterprise software as a service in the cloud U-DBSCAN : A density-based clustering algorithm for uncertain objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1