机器学习本质上应用于HDR显示质量的各个维度

A. Choudhury, S. Daly
{"title":"机器学习本质上应用于HDR显示质量的各个维度","authors":"A. Choudhury, S. Daly","doi":"10.1109/PCS.2018.8456284","DOIUrl":null,"url":null,"abstract":"This study builds on previous work exploring machine learning and perceptual transforms in predicting overall display quality as a function of image quality dimensions that correspond to physical display parameters. Previously, we found that the use of perceptually transformed parameters or machine learning exceeded the performance of predictors using just physical parameters and linear regression. Further, the combination of perceptually transformed parameters with machine learning allowed for robustness to parameters outside of the data set, both for cases of interpolation and extrapolation. Here we apply machine learning at a more intrinsic level. We first evaluate how well the machine learning can develop predictors of the individual dimensions of the overall quality, and then how well those individual predictors can be consolidated across themselves to predict the overall display quality. Having predictions of individual dimensions of quality that are closely related to specific hardware design choices enables more nimble cost trade-off design options.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine learning as applied intrinsically to individual dimensions of HDR Display Quality\",\"authors\":\"A. Choudhury, S. Daly\",\"doi\":\"10.1109/PCS.2018.8456284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study builds on previous work exploring machine learning and perceptual transforms in predicting overall display quality as a function of image quality dimensions that correspond to physical display parameters. Previously, we found that the use of perceptually transformed parameters or machine learning exceeded the performance of predictors using just physical parameters and linear regression. Further, the combination of perceptually transformed parameters with machine learning allowed for robustness to parameters outside of the data set, both for cases of interpolation and extrapolation. Here we apply machine learning at a more intrinsic level. We first evaluate how well the machine learning can develop predictors of the individual dimensions of the overall quality, and then how well those individual predictors can be consolidated across themselves to predict the overall display quality. Having predictions of individual dimensions of quality that are closely related to specific hardware design choices enables more nimble cost trade-off design options.\",\"PeriodicalId\":433667,\"journal\":{\"name\":\"2018 Picture Coding Symposium (PCS)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Picture Coding Symposium (PCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS.2018.8456284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究建立在先前探索机器学习和感知转换的工作基础上,以预测整体显示质量作为与物理显示参数对应的图像质量维度的函数。之前,我们发现使用感知转换参数或机器学习超过了仅使用物理参数和线性回归的预测器的性能。此外,感知转换参数与机器学习的结合允许对数据集之外的参数具有鲁棒性,无论是内插还是外推。在这里,我们将机器学习应用于更内在的层面。我们首先评估机器学习对整体质量的各个维度的预测能力,然后评估这些个体预测能力在预测整体显示质量方面的整合能力。预测与特定硬件设计选择密切相关的单个质量维度,可以实现更灵活的成本权衡设计选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning as applied intrinsically to individual dimensions of HDR Display Quality
This study builds on previous work exploring machine learning and perceptual transforms in predicting overall display quality as a function of image quality dimensions that correspond to physical display parameters. Previously, we found that the use of perceptually transformed parameters or machine learning exceeded the performance of predictors using just physical parameters and linear regression. Further, the combination of perceptually transformed parameters with machine learning allowed for robustness to parameters outside of the data set, both for cases of interpolation and extrapolation. Here we apply machine learning at a more intrinsic level. We first evaluate how well the machine learning can develop predictors of the individual dimensions of the overall quality, and then how well those individual predictors can be consolidated across themselves to predict the overall display quality. Having predictions of individual dimensions of quality that are closely related to specific hardware design choices enables more nimble cost trade-off design options.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Future Video Coding Technologies: A Performance Evaluation of AV1, JEM, VP9, and HM Joint Optimization of Rate, Distortion, and Maximum Absolute Error for Compression of Medical Volumes Using HEVC Intra Wavelet Decomposition Pre-processing for Spatial Scalability Video Compression Scheme Detecting Source Video Artifacts with Supervised Sparse Filters Perceptually-Aligned Frame Rate Selection Using Spatio-Temporal Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1