Xinkai Chen, Xiaoyu Zhang, Lingwei Zhang, Nan Qi, Hanjun Jiang, Zhihua Wang
{"title":"一种具有低功耗控制和处理ASIC的无线胶囊内镜系统","authors":"Xinkai Chen, Xiaoyu Zhang, Lingwei Zhang, Nan Qi, Hanjun Jiang, Zhihua Wang","doi":"10.1109/ASSCC.2008.4708792","DOIUrl":null,"url":null,"abstract":"This paper presents the design of a wireless capsule endoscopic system with a low-power controlling and processing ASIC. The system aims at several design challenges including system power reduction, system miniaturization and wireless wake-up method. These challenges are met by employing optimized system architecture, integration of an area and power efficient image compression module, a power management unit (PMU) and a novel wireless wake-up subsystem with zero standby current in the ASIC design. The ASIC has been fabricated in 0.18-mum CMOS technology, and occupies a die area of 3.4 mm*3.3 mm. The digital core can work under a power supply down to 0.95V, and the power consumption is only 1.3 mW. The wireless capsule endoscope prototype has been implemented with this ASIC.","PeriodicalId":143173,"journal":{"name":"2008 IEEE Asian Solid-State Circuits Conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A wireless capsule endoscopic system with a low-power controlling and processing ASIC\",\"authors\":\"Xinkai Chen, Xiaoyu Zhang, Lingwei Zhang, Nan Qi, Hanjun Jiang, Zhihua Wang\",\"doi\":\"10.1109/ASSCC.2008.4708792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design of a wireless capsule endoscopic system with a low-power controlling and processing ASIC. The system aims at several design challenges including system power reduction, system miniaturization and wireless wake-up method. These challenges are met by employing optimized system architecture, integration of an area and power efficient image compression module, a power management unit (PMU) and a novel wireless wake-up subsystem with zero standby current in the ASIC design. The ASIC has been fabricated in 0.18-mum CMOS technology, and occupies a die area of 3.4 mm*3.3 mm. The digital core can work under a power supply down to 0.95V, and the power consumption is only 1.3 mW. The wireless capsule endoscope prototype has been implemented with this ASIC.\",\"PeriodicalId\":143173,\"journal\":{\"name\":\"2008 IEEE Asian Solid-State Circuits Conference\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Asian Solid-State Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASSCC.2008.4708792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Asian Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2008.4708792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
摘要
本文介绍了一种采用低功耗ASIC控制和处理的无线胶囊内镜系统的设计。该系统旨在解决系统功耗降低、系统小型化和无线唤醒等设计难题。ASIC设计采用优化的系统架构,集成了面积和功耗高效的图像压缩模块,电源管理单元(PMU)和具有零待机电流的新型无线唤醒子系统,以应对这些挑战。该ASIC采用0.18 mm CMOS技术制造,其芯片面积为3.4 mm*3.3 mm。数字核心可以在低至0.95V的电源下工作,功耗仅为1.3 mW。无线胶囊内窥镜原型已经用该ASIC实现。
A wireless capsule endoscopic system with a low-power controlling and processing ASIC
This paper presents the design of a wireless capsule endoscopic system with a low-power controlling and processing ASIC. The system aims at several design challenges including system power reduction, system miniaturization and wireless wake-up method. These challenges are met by employing optimized system architecture, integration of an area and power efficient image compression module, a power management unit (PMU) and a novel wireless wake-up subsystem with zero standby current in the ASIC design. The ASIC has been fabricated in 0.18-mum CMOS technology, and occupies a die area of 3.4 mm*3.3 mm. The digital core can work under a power supply down to 0.95V, and the power consumption is only 1.3 mW. The wireless capsule endoscope prototype has been implemented with this ASIC.