Yu-Tao Yang, Haoxiang Ren, S. Chong, Gang Qiu, Shu-Yun Ku, Yang Cheng, Chaowei Hu, Tiema Qian, Kuan-Neng Chen, Ni Ni, Kang L. Wang, S. Iyer
{"title":"面向未来大规模量子应用的铌基超导硅互连结构的射频特性研究","authors":"Yu-Tao Yang, Haoxiang Ren, S. Chong, Gang Qiu, Shu-Yun Ku, Yang Cheng, Chaowei Hu, Tiema Qian, Kuan-Neng Chen, Ni Ni, Kang L. Wang, S. Iyer","doi":"10.1109/ectc51906.2022.00154","DOIUrl":null,"url":null,"abstract":"To preserve delicate quantum signals (few hundreds to a few tens of µV), low-loss and low-crosstalk inter-dielet communication is a must in a wafer-scale integrated quantum system using Superconducting-IF. In this paper, inter-dielet links (short: 125 μm and 500 μm; long: 1750 μm) with L/S (2/2 and 5/5 μm) are characterized in a broadband 20 GHz range through simulation and experiments at 4K A compact assembly (inter-dielet spacing of 100 μm) through the quantum-compatible fine-pitch (10 um) Au interlayer is conducted. For insertion loss and crosstalk characterization, the simulated and measured results are presented to be low-loss (<1 dB) and low-crosstalk (< -23 dB) in the broadband 20 GHz range with short (≤ 500 um) and long (1750 um) links and two L/S (2/2 and 5/5 um). It is one of the first 20 GHz broadband RF characterization of short superconducting links (≤ 500 um) through advanced packaging for cryogenic inter-dielet quantum communication. This work brings large-scale quantum computing closer to being realized through compact heterogeneous integration.","PeriodicalId":139520,"journal":{"name":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RF Characterization on Nb-based Superconducting Silicon Interconnect Fabric for Future Large Scale Quantum Applications\",\"authors\":\"Yu-Tao Yang, Haoxiang Ren, S. Chong, Gang Qiu, Shu-Yun Ku, Yang Cheng, Chaowei Hu, Tiema Qian, Kuan-Neng Chen, Ni Ni, Kang L. Wang, S. Iyer\",\"doi\":\"10.1109/ectc51906.2022.00154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To preserve delicate quantum signals (few hundreds to a few tens of µV), low-loss and low-crosstalk inter-dielet communication is a must in a wafer-scale integrated quantum system using Superconducting-IF. In this paper, inter-dielet links (short: 125 μm and 500 μm; long: 1750 μm) with L/S (2/2 and 5/5 μm) are characterized in a broadband 20 GHz range through simulation and experiments at 4K A compact assembly (inter-dielet spacing of 100 μm) through the quantum-compatible fine-pitch (10 um) Au interlayer is conducted. For insertion loss and crosstalk characterization, the simulated and measured results are presented to be low-loss (<1 dB) and low-crosstalk (< -23 dB) in the broadband 20 GHz range with short (≤ 500 um) and long (1750 um) links and two L/S (2/2 and 5/5 um). It is one of the first 20 GHz broadband RF characterization of short superconducting links (≤ 500 um) through advanced packaging for cryogenic inter-dielet quantum communication. This work brings large-scale quantum computing closer to being realized through compact heterogeneous integration.\",\"PeriodicalId\":139520,\"journal\":{\"name\":\"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ectc51906.2022.00154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ectc51906.2022.00154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RF Characterization on Nb-based Superconducting Silicon Interconnect Fabric for Future Large Scale Quantum Applications
To preserve delicate quantum signals (few hundreds to a few tens of µV), low-loss and low-crosstalk inter-dielet communication is a must in a wafer-scale integrated quantum system using Superconducting-IF. In this paper, inter-dielet links (short: 125 μm and 500 μm; long: 1750 μm) with L/S (2/2 and 5/5 μm) are characterized in a broadband 20 GHz range through simulation and experiments at 4K A compact assembly (inter-dielet spacing of 100 μm) through the quantum-compatible fine-pitch (10 um) Au interlayer is conducted. For insertion loss and crosstalk characterization, the simulated and measured results are presented to be low-loss (<1 dB) and low-crosstalk (< -23 dB) in the broadband 20 GHz range with short (≤ 500 um) and long (1750 um) links and two L/S (2/2 and 5/5 um). It is one of the first 20 GHz broadband RF characterization of short superconducting links (≤ 500 um) through advanced packaging for cryogenic inter-dielet quantum communication. This work brings large-scale quantum computing closer to being realized through compact heterogeneous integration.