使用2015年高中社会科学国家考试结果对印度尼西亚地区进行聚类

R. Ferdhiana, K. Amri, T. Abidin
{"title":"使用2015年高中社会科学国家考试结果对印度尼西亚地区进行聚类","authors":"R. Ferdhiana, K. Amri, T. Abidin","doi":"10.1109/ICICoS48119.2019.8982524","DOIUrl":null,"url":null,"abstract":"This study aims to cluster 513 districts in Indonesia using the results of High School National Examination or “Ujian Nasional (UN)” in Indonesian language majoring in social sciences to map the learning outcomes in the districts. The attributes consist of 6 subjects which are Bahasa Indonesia, English, Mathematics, Economics, Sociology, and Geography. The clustering methods used are Complete-linkage and K-Means. The clustering results are compared with the District Human Development Index (HDI) of the clusters. The results show that the districts in Indonesia are grouped into 5 clusters and there is a slight dissimilarity between the scores of UN and HDI.","PeriodicalId":105407,"journal":{"name":"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Clustering of Districts in Indonesia using the 2015 High School Social Sciences National Examination Results\",\"authors\":\"R. Ferdhiana, K. Amri, T. Abidin\",\"doi\":\"10.1109/ICICoS48119.2019.8982524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to cluster 513 districts in Indonesia using the results of High School National Examination or “Ujian Nasional (UN)” in Indonesian language majoring in social sciences to map the learning outcomes in the districts. The attributes consist of 6 subjects which are Bahasa Indonesia, English, Mathematics, Economics, Sociology, and Geography. The clustering methods used are Complete-linkage and K-Means. The clustering results are compared with the District Human Development Index (HDI) of the clusters. The results show that the districts in Indonesia are grouped into 5 clusters and there is a slight dissimilarity between the scores of UN and HDI.\",\"PeriodicalId\":105407,\"journal\":{\"name\":\"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICoS48119.2019.8982524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICoS48119.2019.8982524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究旨在以印尼513个地区为研究对象,以印尼高中国家考试(Ujian Nasional)印尼语社会科学专业的成绩为研究对象,绘制各地区的学习成果分布图。这些属性包括6个科目,分别是印尼语、英语、数学、经济学、社会学和地理。使用的聚类方法是Complete-linkage和K-Means。将聚类结果与集群的区域人类发展指数(HDI)进行比较。结果表明,印度尼西亚的地区分为5个集群,联合国和HDI得分之间存在轻微的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustering of Districts in Indonesia using the 2015 High School Social Sciences National Examination Results
This study aims to cluster 513 districts in Indonesia using the results of High School National Examination or “Ujian Nasional (UN)” in Indonesian language majoring in social sciences to map the learning outcomes in the districts. The attributes consist of 6 subjects which are Bahasa Indonesia, English, Mathematics, Economics, Sociology, and Geography. The clustering methods used are Complete-linkage and K-Means. The clustering results are compared with the District Human Development Index (HDI) of the clusters. The results show that the districts in Indonesia are grouped into 5 clusters and there is a slight dissimilarity between the scores of UN and HDI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of GPGPU-Based Brute-Force and Dictionary Attack on SHA-1 Password Hash Ranking of Game Mechanics for Gamification in Mobile Payment Using AHP-TOPSIS: Uses and Gratification Perspective An Assesment of Knowledge Sharing System: SCeLE Universitas Indonesia Improved Line Operator for Retinal Blood Vessel Segmentation Classification of Abnormality in Chest X-Ray Images by Transfer Learning of CheXNet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1