编码结构光的MRF公式

J. Tardif, S. Roy
{"title":"编码结构光的MRF公式","authors":"J. Tardif, S. Roy","doi":"10.1109/3DIM.2005.11","DOIUrl":null,"url":null,"abstract":"Multimedia projectors and cameras make possible the use of structured light to solve problems such as 3D reconstruction, disparity map computation and camera or projector calibration. Each projector displays patterns over a scene viewed by a camera, thereby allowing automatic computation of camera-projector pixel correspondences. This paper introduces a new algorithm to establish this correspondence in difficult cases of image acquisition. A probabilistic model formulated as a Markov random field uses the stripe images to find the most likely correspondences in the presence of noise. Our model is specially tailored to handle the unfavorable projector-camera pixel ratios that occur in multiple-projector single-camera setups. For the case where more than one camera is used, we propose a robust approach to establish correspondences between the cameras and compute an accurate disparity map. To conduct experiments, a ground truth was first reconstructed from a high quality acquisition. Various degradations were applied to the pattern images which were then solved using our method. The results were compared to the ground truth for error analysis and showed very good performances, even near depth discontinuities.","PeriodicalId":170883,"journal":{"name":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A MRF formulation for coded structured light\",\"authors\":\"J. Tardif, S. Roy\",\"doi\":\"10.1109/3DIM.2005.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimedia projectors and cameras make possible the use of structured light to solve problems such as 3D reconstruction, disparity map computation and camera or projector calibration. Each projector displays patterns over a scene viewed by a camera, thereby allowing automatic computation of camera-projector pixel correspondences. This paper introduces a new algorithm to establish this correspondence in difficult cases of image acquisition. A probabilistic model formulated as a Markov random field uses the stripe images to find the most likely correspondences in the presence of noise. Our model is specially tailored to handle the unfavorable projector-camera pixel ratios that occur in multiple-projector single-camera setups. For the case where more than one camera is used, we propose a robust approach to establish correspondences between the cameras and compute an accurate disparity map. To conduct experiments, a ground truth was first reconstructed from a high quality acquisition. Various degradations were applied to the pattern images which were then solved using our method. The results were compared to the ground truth for error analysis and showed very good performances, even near depth discontinuities.\",\"PeriodicalId\":170883,\"journal\":{\"name\":\"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DIM.2005.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIM.2005.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

多媒体投影仪和摄像机使得使用结构光来解决诸如3D重建、视差图计算和摄像机或投影仪校准等问题成为可能。每个投影仪显示由摄像机观看的场景上的图案,从而允许自动计算摄像机-投影仪像素对应。本文介绍了一种新的算法来在图像采集困难的情况下建立这种对应关系。用马尔科夫随机场表示的概率模型使用条纹图像在存在噪声的情况下找到最可能的对应。我们的模型是专门为处理不利的投影机-相机像素比,出现在多投影机单相机设置。对于使用多个相机的情况,我们提出了一种健壮的方法来建立相机之间的对应关系并计算准确的视差图。为了进行实验,首先从高质量的采集中重建一个基础真值。对图案图像进行了不同程度的退化,然后用我们的方法进行了求解。结果与地面真实值进行了误差分析,显示出非常好的性能,即使在近深度不连续处也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A MRF formulation for coded structured light
Multimedia projectors and cameras make possible the use of structured light to solve problems such as 3D reconstruction, disparity map computation and camera or projector calibration. Each projector displays patterns over a scene viewed by a camera, thereby allowing automatic computation of camera-projector pixel correspondences. This paper introduces a new algorithm to establish this correspondence in difficult cases of image acquisition. A probabilistic model formulated as a Markov random field uses the stripe images to find the most likely correspondences in the presence of noise. Our model is specially tailored to handle the unfavorable projector-camera pixel ratios that occur in multiple-projector single-camera setups. For the case where more than one camera is used, we propose a robust approach to establish correspondences between the cameras and compute an accurate disparity map. To conduct experiments, a ground truth was first reconstructed from a high quality acquisition. Various degradations were applied to the pattern images which were then solved using our method. The results were compared to the ground truth for error analysis and showed very good performances, even near depth discontinuities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A complete U-V-disparity study for stereovision based 3D driving environment analysis Simultaneous determination of registration and deformation parameters among 3D range images 3D digitization of a large model of imperial Rome Evaluating collinearity constraint for automatic range image registration Realistic human head modeling with multi-view hairstyle reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1