{"title":"死区时间为32ns的低噪声CMOS单光子雪崩二极管","authors":"L. Pancheri, D. Stoppa","doi":"10.1109/ESSDERC.2007.4430953","DOIUrl":null,"url":null,"abstract":"The implementation of single-photon avalanche diode detectors (SPAD) in a standard high voltage 0.7-mum CMOS technology is presented. Two different device structures, combined with integrated quenching circuits, have been fabricated and successfully tested. A novel biasing scheme is proposed allowing the reduction of afterpulsing effect and the decrease of minimum device-to-device distance. Good noise performance is obtained for the 100 mum2 active area device where over 50% of the population has a dark count rate below lOOcps and afterpulsing lower than 0.3% with a 4-V excess bias and a 32-ns dead time. The peak photon detection probability is about 30%, while the overall system, upper limit, for the time resolution is 144 ps.","PeriodicalId":103959,"journal":{"name":"ESSDERC 2007 - 37th European Solid State Device Research Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"Low-Noise CMOS single-photon avalanche diodes with 32 ns dead time\",\"authors\":\"L. Pancheri, D. Stoppa\",\"doi\":\"10.1109/ESSDERC.2007.4430953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The implementation of single-photon avalanche diode detectors (SPAD) in a standard high voltage 0.7-mum CMOS technology is presented. Two different device structures, combined with integrated quenching circuits, have been fabricated and successfully tested. A novel biasing scheme is proposed allowing the reduction of afterpulsing effect and the decrease of minimum device-to-device distance. Good noise performance is obtained for the 100 mum2 active area device where over 50% of the population has a dark count rate below lOOcps and afterpulsing lower than 0.3% with a 4-V excess bias and a 32-ns dead time. The peak photon detection probability is about 30%, while the overall system, upper limit, for the time resolution is 144 ps.\",\"PeriodicalId\":103959,\"journal\":{\"name\":\"ESSDERC 2007 - 37th European Solid State Device Research Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSDERC 2007 - 37th European Solid State Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSDERC.2007.4430953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSDERC 2007 - 37th European Solid State Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2007.4430953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79
摘要
介绍了在标准高压0.7 μ m CMOS技术上实现单光子雪崩二极管探测器(SPAD)的方法。两种不同的器件结构,结合集成淬火电路,已经制造并成功测试。提出了一种新的偏置方案,可以减小后脉冲效应和器件间最小距离。在100 mum2有源器件中,超过50%的器件具有低于loopps的暗计数率和低于0.3%的后脉冲,具有4 v的过量偏置和32ns的死区时间,具有良好的噪声性能。峰值光子检测概率约为30%,而整个系统的时间分辨率上限为144ps。
Low-Noise CMOS single-photon avalanche diodes with 32 ns dead time
The implementation of single-photon avalanche diode detectors (SPAD) in a standard high voltage 0.7-mum CMOS technology is presented. Two different device structures, combined with integrated quenching circuits, have been fabricated and successfully tested. A novel biasing scheme is proposed allowing the reduction of afterpulsing effect and the decrease of minimum device-to-device distance. Good noise performance is obtained for the 100 mum2 active area device where over 50% of the population has a dark count rate below lOOcps and afterpulsing lower than 0.3% with a 4-V excess bias and a 32-ns dead time. The peak photon detection probability is about 30%, while the overall system, upper limit, for the time resolution is 144 ps.