基于YOLOv8模型的腹腔镜手术工具鲁棒检测

Hai-Binh Le, Thai Dinh Kim, Manh-Hung Ha, Anh Long Quang Tran, Duy-Thuc Nguyen, X. Dinh
{"title":"基于YOLOv8模型的腹腔镜手术工具鲁棒检测","authors":"Hai-Binh Le, Thai Dinh Kim, Manh-Hung Ha, Anh Long Quang Tran, Duy-Thuc Nguyen, X. Dinh","doi":"10.1109/ICSSE58758.2023.10227217","DOIUrl":null,"url":null,"abstract":"Surgica1 tool detection involves identifying the position and type of instruments in an image. This is one of the significant issues in automatic video analysis that can aid in evaluating the surgical skills of doctors or automating the process of controlling the viewing angle of the endoscopic camera. This paper presents a robust method for detecting surgical tools using the YOLOv8 model. We trained four different versions of YOLOv8, evaluated their effectiveness, and compared them with previous models. The experimental results indicate that the YOLOv8 models have an average mAP50 greater than 95.6% across all classes, and are significantly better than some previous research findings.","PeriodicalId":280745,"journal":{"name":"2023 International Conference on System Science and Engineering (ICSSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Surgical Tool Detection in Laparoscopic Surgery using YOLOv8 Model\",\"authors\":\"Hai-Binh Le, Thai Dinh Kim, Manh-Hung Ha, Anh Long Quang Tran, Duy-Thuc Nguyen, X. Dinh\",\"doi\":\"10.1109/ICSSE58758.2023.10227217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surgica1 tool detection involves identifying the position and type of instruments in an image. This is one of the significant issues in automatic video analysis that can aid in evaluating the surgical skills of doctors or automating the process of controlling the viewing angle of the endoscopic camera. This paper presents a robust method for detecting surgical tools using the YOLOv8 model. We trained four different versions of YOLOv8, evaluated their effectiveness, and compared them with previous models. The experimental results indicate that the YOLOv8 models have an average mAP50 greater than 95.6% across all classes, and are significantly better than some previous research findings.\",\"PeriodicalId\":280745,\"journal\":{\"name\":\"2023 International Conference on System Science and Engineering (ICSSE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on System Science and Engineering (ICSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSE58758.2023.10227217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE58758.2023.10227217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

手术工具检测包括识别图像中工具的位置和类型。这是自动视频分析中的一个重要问题,它可以帮助评估医生的手术技能或自动控制内窥镜摄像机的视角。本文提出了一种使用YOLOv8模型检测手术工具的鲁棒方法。我们训练了四个不同版本的YOLOv8,评估了它们的有效性,并将它们与以前的模型进行了比较。实验结果表明,YOLOv8模型在所有类别中的平均mAP50都大于95.6%,明显优于以往的一些研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Surgical Tool Detection in Laparoscopic Surgery using YOLOv8 Model
Surgica1 tool detection involves identifying the position and type of instruments in an image. This is one of the significant issues in automatic video analysis that can aid in evaluating the surgical skills of doctors or automating the process of controlling the viewing angle of the endoscopic camera. This paper presents a robust method for detecting surgical tools using the YOLOv8 model. We trained four different versions of YOLOv8, evaluated their effectiveness, and compared them with previous models. The experimental results indicate that the YOLOv8 models have an average mAP50 greater than 95.6% across all classes, and are significantly better than some previous research findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Q-Network (DQN) Approach for Automatic Vehicles Applied in the Intelligent Transportation System (ITS) Improvement in Proportional Energy Sharing and DC Bus Voltage Restoring for DC Microgrid in the Islanded Operation Mode A New Buck-Boost Converter Structure With Improved Efficiency Performance of Energy Harvesting Aided Multi-hop Mobile Relay Networks With and Without Using Cooperative Communication A New Novel of Prescribed Optimal Control and Its Application for Smart Damping System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1