{"title":"高电流GaN hemt功率模块多层集成有机衬底的分析与优化","authors":"E. Gurpinar, Raj Sahu, B. Ozpineci, D. DeVoto","doi":"10.1109/WiPDAAsia49671.2020.9360269","DOIUrl":null,"url":null,"abstract":"In this paper, analysis and optimization of a multi-layer organic substrate for high current GaN HEMT based power module are discussed. The organic multi-layer substrates can provide high electrical performance in terms of low parasitic inductance in the power loop by providing vertical layout, and shielding for reduction of common-mode noise, a common problem in fast switching power converters. Furthermore, high performance cooling solutions, such as micro-channel heat sinks, can be directly bonded to the substrate for optimum thermal management. The structure of the proposed architecture, thermal analysis and optimization of layer thickness, thermo-mechanical stress analysis of the GaN HEMT and development of a high-performance heat sink are discussed.","PeriodicalId":432666,"journal":{"name":"2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Analysis and Optimization of a Multi-Layer Integrated Organic Substrate for High Current GaN HEMT-Based Power Module\",\"authors\":\"E. Gurpinar, Raj Sahu, B. Ozpineci, D. DeVoto\",\"doi\":\"10.1109/WiPDAAsia49671.2020.9360269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, analysis and optimization of a multi-layer organic substrate for high current GaN HEMT based power module are discussed. The organic multi-layer substrates can provide high electrical performance in terms of low parasitic inductance in the power loop by providing vertical layout, and shielding for reduction of common-mode noise, a common problem in fast switching power converters. Furthermore, high performance cooling solutions, such as micro-channel heat sinks, can be directly bonded to the substrate for optimum thermal management. The structure of the proposed architecture, thermal analysis and optimization of layer thickness, thermo-mechanical stress analysis of the GaN HEMT and development of a high-performance heat sink are discussed.\",\"PeriodicalId\":432666,\"journal\":{\"name\":\"2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WiPDAAsia49671.2020.9360269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WiPDAAsia49671.2020.9360269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis and Optimization of a Multi-Layer Integrated Organic Substrate for High Current GaN HEMT-Based Power Module
In this paper, analysis and optimization of a multi-layer organic substrate for high current GaN HEMT based power module are discussed. The organic multi-layer substrates can provide high electrical performance in terms of low parasitic inductance in the power loop by providing vertical layout, and shielding for reduction of common-mode noise, a common problem in fast switching power converters. Furthermore, high performance cooling solutions, such as micro-channel heat sinks, can be directly bonded to the substrate for optimum thermal management. The structure of the proposed architecture, thermal analysis and optimization of layer thickness, thermo-mechanical stress analysis of the GaN HEMT and development of a high-performance heat sink are discussed.