电信行业探索性数据分析与客户流失预测

K. Singh, Prabh Deep Singh, Ankit Bansal, Gaganpreet Kaur, Vikas Khullar, V. Tripathi
{"title":"电信行业探索性数据分析与客户流失预测","authors":"K. Singh, Prabh Deep Singh, Ankit Bansal, Gaganpreet Kaur, Vikas Khullar, V. Tripathi","doi":"10.1109/ACCESS57397.2023.10199700","DOIUrl":null,"url":null,"abstract":"The telecommunications business is one of the key industries with a higher risk of revenue loss owing to client turnover and environmental impact. Thus, efficient and effective churn management includes targeted marketing campaigns, special promotions, or other incentives to keep the customer engaged in technological progress. There are a lot of machine learning algorithms available now, but very few of them can effectively take into account the asymmetrical structure of the telecommunications dataset. The efficiency of machine learning algorithms may also vary depending on how closely they approximate the real-world telecommunications data rather than the publicly available dataset. As a result, the researchers used various predictive models, including XGBoost, for this dataset. The accuracy achieved on the native dataset is 82.80%. Results show the effectiveness of the predictive model with great technological capabilities.","PeriodicalId":345351,"journal":{"name":"2023 3rd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploratory Data Analysis and Customer Churn Prediction for the Telecommunication Industry\",\"authors\":\"K. Singh, Prabh Deep Singh, Ankit Bansal, Gaganpreet Kaur, Vikas Khullar, V. Tripathi\",\"doi\":\"10.1109/ACCESS57397.2023.10199700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The telecommunications business is one of the key industries with a higher risk of revenue loss owing to client turnover and environmental impact. Thus, efficient and effective churn management includes targeted marketing campaigns, special promotions, or other incentives to keep the customer engaged in technological progress. There are a lot of machine learning algorithms available now, but very few of them can effectively take into account the asymmetrical structure of the telecommunications dataset. The efficiency of machine learning algorithms may also vary depending on how closely they approximate the real-world telecommunications data rather than the publicly available dataset. As a result, the researchers used various predictive models, including XGBoost, for this dataset. The accuracy achieved on the native dataset is 82.80%. Results show the effectiveness of the predictive model with great technological capabilities.\",\"PeriodicalId\":345351,\"journal\":{\"name\":\"2023 3rd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACCESS57397.2023.10199700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACCESS57397.2023.10199700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于客户流失和环境影响,电信业务是收入损失风险较高的关键行业之一。因此,高效和有效的客户流失管理包括有针对性的营销活动、特别促销或其他激励措施,以保持客户参与技术进步。现在有很多可用的机器学习算法,但很少有算法能够有效地考虑到电信数据集的不对称结构。机器学习算法的效率也可能取决于它们接近真实世界电信数据的程度,而不是公开可用的数据集。因此,研究人员对该数据集使用了各种预测模型,包括XGBoost。在本地数据集上实现的准确率为82.80%。结果表明,该预测模型具有较强的技术能力和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploratory Data Analysis and Customer Churn Prediction for the Telecommunication Industry
The telecommunications business is one of the key industries with a higher risk of revenue loss owing to client turnover and environmental impact. Thus, efficient and effective churn management includes targeted marketing campaigns, special promotions, or other incentives to keep the customer engaged in technological progress. There are a lot of machine learning algorithms available now, but very few of them can effectively take into account the asymmetrical structure of the telecommunications dataset. The efficiency of machine learning algorithms may also vary depending on how closely they approximate the real-world telecommunications data rather than the publicly available dataset. As a result, the researchers used various predictive models, including XGBoost, for this dataset. The accuracy achieved on the native dataset is 82.80%. Results show the effectiveness of the predictive model with great technological capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soteria: A Blockchain Assisted Lightweight and Efficient Certificateless Handover Authentication Mechanism for VANET Tumour region detection in MR brain images using MFCM based segmentation and Self Accommodative JAYA based optimization Malayalam Handwritten Character Recognition using Transfer Learning and Fine Tuning of Deep Convolutional Neural Networks Development of an Innovative Optimal Route Selection Model Based on an Improved Multi-Objective Genetic Algorithm (IMOGA) Method in IoT Healthcare A Low Power, Long Range, Portable Wireless Nurse Call System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1