{"title":"用于MIMO检测的深度时序预测神经网络","authors":"Yiqing Zhang, Wei Zheng, J. Xue, Jianyong Sun","doi":"10.1109/ICIST55546.2022.9926790","DOIUrl":null,"url":null,"abstract":"Recovering the transmitted signals in a multiple-input multiple-output (MIMO) system is known to be non-deterministic polynomial hard. It is extremely challenging to obtain a high-quality solution with fairly low computational complexity. To solve the MIMO detection problem effectively, this paper proposes to model it as a time series prediction problem, and a bidirectional temporal convolutional network (Bi- TCN) is designed to address it. In Bi- TCN, the encoder extracts the features of the received signal and the channel matrix by applying non-causal dilated convolution, and the decoder outputs the probability distribution of the recovered transmitted signal in parallel. In the experiments, we compare it with traditional and deep learning-based detectors on both i.i.d. and correlated Rayleigh fading channels, respectively. Experimental results empirically demonstrate that Bi- TCN can achieve near-optimal bit-error-rate (BER) performance with considerably low space complexity.","PeriodicalId":211213,"journal":{"name":"2022 12th International Conference on Information Science and Technology (ICIST)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Temporal Sequence Prediction Neural Network for MIMO Detection\",\"authors\":\"Yiqing Zhang, Wei Zheng, J. Xue, Jianyong Sun\",\"doi\":\"10.1109/ICIST55546.2022.9926790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recovering the transmitted signals in a multiple-input multiple-output (MIMO) system is known to be non-deterministic polynomial hard. It is extremely challenging to obtain a high-quality solution with fairly low computational complexity. To solve the MIMO detection problem effectively, this paper proposes to model it as a time series prediction problem, and a bidirectional temporal convolutional network (Bi- TCN) is designed to address it. In Bi- TCN, the encoder extracts the features of the received signal and the channel matrix by applying non-causal dilated convolution, and the decoder outputs the probability distribution of the recovered transmitted signal in parallel. In the experiments, we compare it with traditional and deep learning-based detectors on both i.i.d. and correlated Rayleigh fading channels, respectively. Experimental results empirically demonstrate that Bi- TCN can achieve near-optimal bit-error-rate (BER) performance with considerably low space complexity.\",\"PeriodicalId\":211213,\"journal\":{\"name\":\"2022 12th International Conference on Information Science and Technology (ICIST)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 12th International Conference on Information Science and Technology (ICIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST55546.2022.9926790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST55546.2022.9926790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Temporal Sequence Prediction Neural Network for MIMO Detection
Recovering the transmitted signals in a multiple-input multiple-output (MIMO) system is known to be non-deterministic polynomial hard. It is extremely challenging to obtain a high-quality solution with fairly low computational complexity. To solve the MIMO detection problem effectively, this paper proposes to model it as a time series prediction problem, and a bidirectional temporal convolutional network (Bi- TCN) is designed to address it. In Bi- TCN, the encoder extracts the features of the received signal and the channel matrix by applying non-causal dilated convolution, and the decoder outputs the probability distribution of the recovered transmitted signal in parallel. In the experiments, we compare it with traditional and deep learning-based detectors on both i.i.d. and correlated Rayleigh fading channels, respectively. Experimental results empirically demonstrate that Bi- TCN can achieve near-optimal bit-error-rate (BER) performance with considerably low space complexity.