一种有效的红外和热成像融合方法用于浓烟场景下的实时人体检测

Nghe-Nhan Truong, M. Le, Truong-Dong Do, Le-Anh Tran, T. Nguyen, Hoang-Hon Trinh
{"title":"一种有效的红外和热成像融合方法用于浓烟场景下的实时人体检测","authors":"Nghe-Nhan Truong, M. Le, Truong-Dong Do, Le-Anh Tran, T. Nguyen, Hoang-Hon Trinh","doi":"10.1109/ICSSE58758.2023.10227078","DOIUrl":null,"url":null,"abstract":"Fire is considered one of the most serious threats to human lives which results in a high probability of fatalities. Those severe consequences stem from the heavy smoke emitted from a fire that mostly restricts the visibility of escaping victims and rescuing squad. In such hazardous circumstances, the use of a vision-based human detection system is able to improve the ability to save more lives. To this end, a thermal and infrared imaging fusion strategy based on multiple cameras for human detection in low-visibility scenarios caused by smoke is proposed in this paper. By processing with multiple cameras, vital information can be gathered to generate more useful features for human detection. Firstly, the cameras are calibrated using a Light Heating Chessboard. Afterward, the features extracted from the input images are merged prior to being passed through a lightweight deep neural network to perform the human detection task. The experiments conducted on an NVIDIA Jetson Nano computer demonstrated that the proposed method can process with reasonable speed and can achieve favorable performance with a mAP@0.5 of 95%.","PeriodicalId":280745,"journal":{"name":"2023 International Conference on System Science and Engineering (ICSSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Infrared and Thermal Imaging Fusion Approach for Real-time Human Detection in Heavy Smoke Scenarios\",\"authors\":\"Nghe-Nhan Truong, M. Le, Truong-Dong Do, Le-Anh Tran, T. Nguyen, Hoang-Hon Trinh\",\"doi\":\"10.1109/ICSSE58758.2023.10227078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fire is considered one of the most serious threats to human lives which results in a high probability of fatalities. Those severe consequences stem from the heavy smoke emitted from a fire that mostly restricts the visibility of escaping victims and rescuing squad. In such hazardous circumstances, the use of a vision-based human detection system is able to improve the ability to save more lives. To this end, a thermal and infrared imaging fusion strategy based on multiple cameras for human detection in low-visibility scenarios caused by smoke is proposed in this paper. By processing with multiple cameras, vital information can be gathered to generate more useful features for human detection. Firstly, the cameras are calibrated using a Light Heating Chessboard. Afterward, the features extracted from the input images are merged prior to being passed through a lightweight deep neural network to perform the human detection task. The experiments conducted on an NVIDIA Jetson Nano computer demonstrated that the proposed method can process with reasonable speed and can achieve favorable performance with a mAP@0.5 of 95%.\",\"PeriodicalId\":280745,\"journal\":{\"name\":\"2023 International Conference on System Science and Engineering (ICSSE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on System Science and Engineering (ICSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSE58758.2023.10227078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE58758.2023.10227078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

火灾被认为是对人类生命最严重的威胁之一,导致死亡的可能性很高。这些严重后果源于大火释放出的浓烟,这在很大程度上限制了逃生受害者和救援小组的能见度。在这种危险的情况下,使用基于视觉的人类检测系统能够提高拯救更多生命的能力。为此,本文提出了一种基于多摄像机的热红外图像融合策略,用于烟雾低能见度场景下的人体检测。通过多个摄像头的处理,可以收集重要信息,生成更多有用的特征,供人类检测。首先,使用光加热棋盘对摄像机进行校准。然后,从输入图像中提取的特征被合并,然后通过一个轻量级的深度神经网络来执行人类检测任务。在NVIDIA Jetson Nano计算机上进行的实验表明,该方法可以以合理的速度进行处理,并且可以达到mAP@0.5 95%的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Infrared and Thermal Imaging Fusion Approach for Real-time Human Detection in Heavy Smoke Scenarios
Fire is considered one of the most serious threats to human lives which results in a high probability of fatalities. Those severe consequences stem from the heavy smoke emitted from a fire that mostly restricts the visibility of escaping victims and rescuing squad. In such hazardous circumstances, the use of a vision-based human detection system is able to improve the ability to save more lives. To this end, a thermal and infrared imaging fusion strategy based on multiple cameras for human detection in low-visibility scenarios caused by smoke is proposed in this paper. By processing with multiple cameras, vital information can be gathered to generate more useful features for human detection. Firstly, the cameras are calibrated using a Light Heating Chessboard. Afterward, the features extracted from the input images are merged prior to being passed through a lightweight deep neural network to perform the human detection task. The experiments conducted on an NVIDIA Jetson Nano computer demonstrated that the proposed method can process with reasonable speed and can achieve favorable performance with a mAP@0.5 of 95%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Q-Network (DQN) Approach for Automatic Vehicles Applied in the Intelligent Transportation System (ITS) Improvement in Proportional Energy Sharing and DC Bus Voltage Restoring for DC Microgrid in the Islanded Operation Mode A New Buck-Boost Converter Structure With Improved Efficiency Performance of Energy Harvesting Aided Multi-hop Mobile Relay Networks With and Without Using Cooperative Communication A New Novel of Prescribed Optimal Control and Its Application for Smart Damping System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1