基于监督学习算法的公共监察员不规范通信分类

Fábio Cordeiro, R. A. L. Rabelo, R. Moura
{"title":"基于监督学习算法的公共监察员不规范通信分类","authors":"Fábio Cordeiro, R. A. L. Rabelo, R. Moura","doi":"10.5753/eniac.2022.227178","DOIUrl":null,"url":null,"abstract":"O objetivo deste trabalho é avaliar modelos de Aprendizado de Máquina (AM) na tarefa de classificação de comunicados de irregularidades em Ouvidorias Públicas de Tribunais de Contas. De maneira geral, pretendese contribuir de forma efetiva para melhorar a triagem desses comunicados, possibilitando maior celeridade na resposta ao cidadão. Devido ao desbalanceamento do dataset original, foram aplicadas técnicas de redimensionamento de dados antes da etapa de treinamento dos modelos. Algoritmos clássicos de Machine Learning (Naive Bayes, Decision Tree, Random Forest, K Nearest Neighbor e Support Vector Machine) foram comparados com o modelo de Deep Learning Bidirectional Encoder Representations from Transformers (BERT) e variações de representação dos textos com Word Embeddings. Os melhores resultados foram obtidos pelo modelo BERT com o dataset redimensionado, atingindo 96% na métrica F1-Score.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification of Irregularity Communications in Public Ombudsmen Using Supervised Learning Algorithms\",\"authors\":\"Fábio Cordeiro, R. A. L. Rabelo, R. Moura\",\"doi\":\"10.5753/eniac.2022.227178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O objetivo deste trabalho é avaliar modelos de Aprendizado de Máquina (AM) na tarefa de classificação de comunicados de irregularidades em Ouvidorias Públicas de Tribunais de Contas. De maneira geral, pretendese contribuir de forma efetiva para melhorar a triagem desses comunicados, possibilitando maior celeridade na resposta ao cidadão. Devido ao desbalanceamento do dataset original, foram aplicadas técnicas de redimensionamento de dados antes da etapa de treinamento dos modelos. Algoritmos clássicos de Machine Learning (Naive Bayes, Decision Tree, Random Forest, K Nearest Neighbor e Support Vector Machine) foram comparados com o modelo de Deep Learning Bidirectional Encoder Representations from Transformers (BERT) e variações de representação dos textos com Word Embeddings. Os melhores resultados foram obtidos pelo modelo BERT com o dataset redimensionado, atingindo 96% na métrica F1-Score.\",\"PeriodicalId\":165095,\"journal\":{\"name\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2022.227178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项工作的目的是评估机器学习模型(AM)在分类任务中的违规报告在审计法院的公共监察员。总的来说,我们的目标是有效地改善这些通信的分类,使公民能够更快地作出反应。由于原始数据集的不平衡,在模型训练步骤之前应用了数据调整技术。将经典的机器学习算法(朴素贝叶斯、决策树、随机森林、K近邻和支持向量机)与深度学习模型变换双向编码器表示(BERT)和文字嵌入文本表示的变化进行了比较。在调整数据集的BERT模型中获得了最好的结果,在F1评分指标中达到了96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of Irregularity Communications in Public Ombudsmen Using Supervised Learning Algorithms
O objetivo deste trabalho é avaliar modelos de Aprendizado de Máquina (AM) na tarefa de classificação de comunicados de irregularidades em Ouvidorias Públicas de Tribunais de Contas. De maneira geral, pretendese contribuir de forma efetiva para melhorar a triagem desses comunicados, possibilitando maior celeridade na resposta ao cidadão. Devido ao desbalanceamento do dataset original, foram aplicadas técnicas de redimensionamento de dados antes da etapa de treinamento dos modelos. Algoritmos clássicos de Machine Learning (Naive Bayes, Decision Tree, Random Forest, K Nearest Neighbor e Support Vector Machine) foram comparados com o modelo de Deep Learning Bidirectional Encoder Representations from Transformers (BERT) e variações de representação dos textos com Word Embeddings. Os melhores resultados foram obtidos pelo modelo BERT com o dataset redimensionado, atingindo 96% na métrica F1-Score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Learned OWA Operators in Pooling and Channel Aggregation Layers in Convolutional Neural Networks Improving steel making off-gas predictions by mixing classification and regression multi-modal multivariate models A Framework for prediction of dropout in distance learning through XAI techniques in Virtual Learning Environment Textile defect detection using YOLOv5 on AITEX Dataset Aspects of a learned model to predict the quality of life of university students in Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1