Yuan-Ying Chang, Yoshi Shih-Chieh Huang, N. Vijaykrishnan, C. King
{"title":"ShieldUS:一种新颖的动态屏蔽设计,用于消除3D TSV串扰耦合噪声","authors":"Yuan-Ying Chang, Yoshi Shih-Chieh Huang, N. Vijaykrishnan, C. King","doi":"10.1109/ASPDAC.2013.6509678","DOIUrl":null,"url":null,"abstract":"3D IC is a promising technology to meet the demands of high throughput, high scalability, and low power consumption for future generation integrated circuits. One way to implement the 3D IC is to interconnect layers of two-dimensional (2D) IC with Through-Silicon Via (TSV), which shortens the signal lengths. Unfortunately, while TSVs are bundled together as a cluster, the crosstalk coupling noise may lead to transmission errors. As a result, the working frequency of TSVs has to be lowered to avoid the errors, leading to narrower bandwidth that TSVs can provide. In this paper, we first derive the crosstalk noise model from the perspective of 3D chip and then propose ShieldUS, a runtime data-to-TSVs remapping strategy. With ShieldUS, the transition patterns of data over TSVs are observed at runtime, and relatively stable bits will be mapped to the TSVs which act as shields to protect the other bits which have more fluctuations. We evaluate the performance of ShieldUS with address lines from real benchmark traces and data lines of different similarities. The results show that ShieldUS is accurate and flexible. We further study dynamic shielding and our design of Interval Equilibration Unit (IEU) can intelligently select suitable parameters for dynamic shielding, which makes dynamic shielding practical and does not need to predefine parameters. This also improves the practicability of ShieldUS.","PeriodicalId":297528,"journal":{"name":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"ShieldUS: A novel design of dynamic shielding for eliminating 3D TSV crosstalk coupling noise\",\"authors\":\"Yuan-Ying Chang, Yoshi Shih-Chieh Huang, N. Vijaykrishnan, C. King\",\"doi\":\"10.1109/ASPDAC.2013.6509678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D IC is a promising technology to meet the demands of high throughput, high scalability, and low power consumption for future generation integrated circuits. One way to implement the 3D IC is to interconnect layers of two-dimensional (2D) IC with Through-Silicon Via (TSV), which shortens the signal lengths. Unfortunately, while TSVs are bundled together as a cluster, the crosstalk coupling noise may lead to transmission errors. As a result, the working frequency of TSVs has to be lowered to avoid the errors, leading to narrower bandwidth that TSVs can provide. In this paper, we first derive the crosstalk noise model from the perspective of 3D chip and then propose ShieldUS, a runtime data-to-TSVs remapping strategy. With ShieldUS, the transition patterns of data over TSVs are observed at runtime, and relatively stable bits will be mapped to the TSVs which act as shields to protect the other bits which have more fluctuations. We evaluate the performance of ShieldUS with address lines from real benchmark traces and data lines of different similarities. The results show that ShieldUS is accurate and flexible. We further study dynamic shielding and our design of Interval Equilibration Unit (IEU) can intelligently select suitable parameters for dynamic shielding, which makes dynamic shielding practical and does not need to predefine parameters. This also improves the practicability of ShieldUS.\",\"PeriodicalId\":297528,\"journal\":{\"name\":\"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2013.6509678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2013.6509678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ShieldUS: A novel design of dynamic shielding for eliminating 3D TSV crosstalk coupling noise
3D IC is a promising technology to meet the demands of high throughput, high scalability, and low power consumption for future generation integrated circuits. One way to implement the 3D IC is to interconnect layers of two-dimensional (2D) IC with Through-Silicon Via (TSV), which shortens the signal lengths. Unfortunately, while TSVs are bundled together as a cluster, the crosstalk coupling noise may lead to transmission errors. As a result, the working frequency of TSVs has to be lowered to avoid the errors, leading to narrower bandwidth that TSVs can provide. In this paper, we first derive the crosstalk noise model from the perspective of 3D chip and then propose ShieldUS, a runtime data-to-TSVs remapping strategy. With ShieldUS, the transition patterns of data over TSVs are observed at runtime, and relatively stable bits will be mapped to the TSVs which act as shields to protect the other bits which have more fluctuations. We evaluate the performance of ShieldUS with address lines from real benchmark traces and data lines of different similarities. The results show that ShieldUS is accurate and flexible. We further study dynamic shielding and our design of Interval Equilibration Unit (IEU) can intelligently select suitable parameters for dynamic shielding, which makes dynamic shielding practical and does not need to predefine parameters. This also improves the practicability of ShieldUS.