Suxuan Guo, Liqi Zhang, Yang Lei, Xuan Li, Wensong Yu, A. Huang
{"title":"1200V超高速集成碳化硅MOSFET模块的设计与应用","authors":"Suxuan Guo, Liqi Zhang, Yang Lei, Xuan Li, Wensong Yu, A. Huang","doi":"10.1109/APEC.2016.7468151","DOIUrl":null,"url":null,"abstract":"With the commercial introduction of wide bandgap power devices such as Silicon Carbide (SiC) and Gallium Nitride (GaN) in the last few years, the high power and high frequency power electronics applications have gained more attention. The fast switching speed and high temperature features of SiC MOSFET break the limit of the traditional silicon MOSFET. However, the EMI problem under high dI/dt and dV/dt is an unneglectable problem. The overshoot and oscillation on drain-source voltage and gating signal could cause breakdown of the switches. This paper proposes a 1200V integrated SiC MOSFET module. With the ultra-fast gate driver integrated with the SiC MOSFET, the parasitic inductance and capacitance could be reduced dramatically, which accordingly suppress the EMI problem caused by the parasitic parameters. Thus zero gate resistance could be adopted in the module to further increase the switching speed. The switching performance of the integrated SiC module is shown better than the discrete package device. The switching loss of the SiC MOSFET module is measured by the inverter level measurement and composition method. Zero switching loss could be achieved when the drain current is lower than a critical value. The module has been tested at 1.5MHz and 3.38MHz switching frequency to prove its high speed capability. For isolated topology applications, the impact of high frequency on the power density and efficiency is discussed in this paper.","PeriodicalId":143091,"journal":{"name":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"80 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Design and application of a 1200V ultra-fast integrated Silicon Carbide MOSFET module\",\"authors\":\"Suxuan Guo, Liqi Zhang, Yang Lei, Xuan Li, Wensong Yu, A. Huang\",\"doi\":\"10.1109/APEC.2016.7468151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the commercial introduction of wide bandgap power devices such as Silicon Carbide (SiC) and Gallium Nitride (GaN) in the last few years, the high power and high frequency power electronics applications have gained more attention. The fast switching speed and high temperature features of SiC MOSFET break the limit of the traditional silicon MOSFET. However, the EMI problem under high dI/dt and dV/dt is an unneglectable problem. The overshoot and oscillation on drain-source voltage and gating signal could cause breakdown of the switches. This paper proposes a 1200V integrated SiC MOSFET module. With the ultra-fast gate driver integrated with the SiC MOSFET, the parasitic inductance and capacitance could be reduced dramatically, which accordingly suppress the EMI problem caused by the parasitic parameters. Thus zero gate resistance could be adopted in the module to further increase the switching speed. The switching performance of the integrated SiC module is shown better than the discrete package device. The switching loss of the SiC MOSFET module is measured by the inverter level measurement and composition method. Zero switching loss could be achieved when the drain current is lower than a critical value. The module has been tested at 1.5MHz and 3.38MHz switching frequency to prove its high speed capability. For isolated topology applications, the impact of high frequency on the power density and efficiency is discussed in this paper.\",\"PeriodicalId\":143091,\"journal\":{\"name\":\"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"80 7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2016.7468151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2016.7468151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and application of a 1200V ultra-fast integrated Silicon Carbide MOSFET module
With the commercial introduction of wide bandgap power devices such as Silicon Carbide (SiC) and Gallium Nitride (GaN) in the last few years, the high power and high frequency power electronics applications have gained more attention. The fast switching speed and high temperature features of SiC MOSFET break the limit of the traditional silicon MOSFET. However, the EMI problem under high dI/dt and dV/dt is an unneglectable problem. The overshoot and oscillation on drain-source voltage and gating signal could cause breakdown of the switches. This paper proposes a 1200V integrated SiC MOSFET module. With the ultra-fast gate driver integrated with the SiC MOSFET, the parasitic inductance and capacitance could be reduced dramatically, which accordingly suppress the EMI problem caused by the parasitic parameters. Thus zero gate resistance could be adopted in the module to further increase the switching speed. The switching performance of the integrated SiC module is shown better than the discrete package device. The switching loss of the SiC MOSFET module is measured by the inverter level measurement and composition method. Zero switching loss could be achieved when the drain current is lower than a critical value. The module has been tested at 1.5MHz and 3.38MHz switching frequency to prove its high speed capability. For isolated topology applications, the impact of high frequency on the power density and efficiency is discussed in this paper.