{"title":"用于超快速包络跟踪的buck变换器混合信号滞回内模控制","authors":"V. I. Kumar, S. Kapat","doi":"10.1109/APEC.2016.7468327","DOIUrl":null,"url":null,"abstract":"Envelope tracking (ET) applications demand high tracking bandwidth and high efficiency using a DC-DC converter. Design based on small-signal models using fixed frequency digital pulse width modulator (DPWM) often results in limited closed-loop bandwidth. This paper proposes a mixed-signal hysteresis current control (MSHCC) in a DC-DC buck converter with an analog current-loop and a digital voltage controller Gc(z). This achieves robust stability and parameter insensitive current ripple by sampling the output voltage at the rising edge of high side gate signal. A fixed-gain power amplifier driven by a buck converter can be assumed to be a constant resistive load. Thus the load current information is directly obtained from the reference command, which further improves the tracking performance. The real-time tuning of Gc(z) using the proposed MSHCC achieves fast recovery with an inherent current limiting, and the use of the internal model control (IMC) further minimizes the tracking error. A fixed frequency operation can be achieved through a real-time band adaptation. The proposed controller is implemented using an FPGA device.","PeriodicalId":143091,"journal":{"name":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mixed-signal hysteretic internal model control of buck converters for ultra-fast envelope tracking\",\"authors\":\"V. I. Kumar, S. Kapat\",\"doi\":\"10.1109/APEC.2016.7468327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Envelope tracking (ET) applications demand high tracking bandwidth and high efficiency using a DC-DC converter. Design based on small-signal models using fixed frequency digital pulse width modulator (DPWM) often results in limited closed-loop bandwidth. This paper proposes a mixed-signal hysteresis current control (MSHCC) in a DC-DC buck converter with an analog current-loop and a digital voltage controller Gc(z). This achieves robust stability and parameter insensitive current ripple by sampling the output voltage at the rising edge of high side gate signal. A fixed-gain power amplifier driven by a buck converter can be assumed to be a constant resistive load. Thus the load current information is directly obtained from the reference command, which further improves the tracking performance. The real-time tuning of Gc(z) using the proposed MSHCC achieves fast recovery with an inherent current limiting, and the use of the internal model control (IMC) further minimizes the tracking error. A fixed frequency operation can be achieved through a real-time band adaptation. The proposed controller is implemented using an FPGA device.\",\"PeriodicalId\":143091,\"journal\":{\"name\":\"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2016.7468327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2016.7468327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mixed-signal hysteretic internal model control of buck converters for ultra-fast envelope tracking
Envelope tracking (ET) applications demand high tracking bandwidth and high efficiency using a DC-DC converter. Design based on small-signal models using fixed frequency digital pulse width modulator (DPWM) often results in limited closed-loop bandwidth. This paper proposes a mixed-signal hysteresis current control (MSHCC) in a DC-DC buck converter with an analog current-loop and a digital voltage controller Gc(z). This achieves robust stability and parameter insensitive current ripple by sampling the output voltage at the rising edge of high side gate signal. A fixed-gain power amplifier driven by a buck converter can be assumed to be a constant resistive load. Thus the load current information is directly obtained from the reference command, which further improves the tracking performance. The real-time tuning of Gc(z) using the proposed MSHCC achieves fast recovery with an inherent current limiting, and the use of the internal model control (IMC) further minimizes the tracking error. A fixed frequency operation can be achieved through a real-time band adaptation. The proposed controller is implemented using an FPGA device.