{"title":"面向高性能单结有机太阳能电池的新分子设计(会议报告)","authors":"Y. Zou","doi":"10.1117/12.2542105","DOIUrl":null,"url":null,"abstract":"Recently, non-fullerene n-type organic semiconductors (n-OS) have attracted significant attention as acceptors in organic photovoltaics (OPVs) due to their great potential to realize high power conversion efficiencies (PCEs). In this regard, a rational design of central fused ring unit of the n-OS molecules is crucial to maximize the state-of-the-art PCEs. Here, we report a new class of n-OS acceptor, Y series, that employ a ladder-type electron-deficient-core-based central fused ring to fine tune its absorption and energy levels. Among these new acceptors, the Y6-based OPVs exhibit a high efficiency of 15.7 % (both in conventional or inverted structures), and a certified efficiency of 14.9 % by an inverted structure. The electron-deficient-core-based fused ring reported in this work opens a new way in the molecular design of high performance n-OS acceptors for OPVs.\n\n \n\nReferences:\n[1] Nat. Commun., 2019, 10: 570\n[2] Adv.Mater., 2019, 31: 1807577\n[3] Joule, 2019, 4:1140-1151","PeriodicalId":342552,"journal":{"name":"Organic, Hybrid, and Perovskite Photovoltaics XX","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New molecular design towards high performance single junction organic solar cell (Conference Presentation)\",\"authors\":\"Y. Zou\",\"doi\":\"10.1117/12.2542105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, non-fullerene n-type organic semiconductors (n-OS) have attracted significant attention as acceptors in organic photovoltaics (OPVs) due to their great potential to realize high power conversion efficiencies (PCEs). In this regard, a rational design of central fused ring unit of the n-OS molecules is crucial to maximize the state-of-the-art PCEs. Here, we report a new class of n-OS acceptor, Y series, that employ a ladder-type electron-deficient-core-based central fused ring to fine tune its absorption and energy levels. Among these new acceptors, the Y6-based OPVs exhibit a high efficiency of 15.7 % (both in conventional or inverted structures), and a certified efficiency of 14.9 % by an inverted structure. The electron-deficient-core-based fused ring reported in this work opens a new way in the molecular design of high performance n-OS acceptors for OPVs.\\n\\n \\n\\nReferences:\\n[1] Nat. Commun., 2019, 10: 570\\n[2] Adv.Mater., 2019, 31: 1807577\\n[3] Joule, 2019, 4:1140-1151\",\"PeriodicalId\":342552,\"journal\":{\"name\":\"Organic, Hybrid, and Perovskite Photovoltaics XX\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic, Hybrid, and Perovskite Photovoltaics XX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2542105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic, Hybrid, and Perovskite Photovoltaics XX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2542105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New molecular design towards high performance single junction organic solar cell (Conference Presentation)
Recently, non-fullerene n-type organic semiconductors (n-OS) have attracted significant attention as acceptors in organic photovoltaics (OPVs) due to their great potential to realize high power conversion efficiencies (PCEs). In this regard, a rational design of central fused ring unit of the n-OS molecules is crucial to maximize the state-of-the-art PCEs. Here, we report a new class of n-OS acceptor, Y series, that employ a ladder-type electron-deficient-core-based central fused ring to fine tune its absorption and energy levels. Among these new acceptors, the Y6-based OPVs exhibit a high efficiency of 15.7 % (both in conventional or inverted structures), and a certified efficiency of 14.9 % by an inverted structure. The electron-deficient-core-based fused ring reported in this work opens a new way in the molecular design of high performance n-OS acceptors for OPVs.
References:
[1] Nat. Commun., 2019, 10: 570
[2] Adv.Mater., 2019, 31: 1807577
[3] Joule, 2019, 4:1140-1151