小型商用车前桥车轮螺柱失效分析

Mahadevan Pichandi, Jagadeesh Selvaraj
{"title":"小型商用车前桥车轮螺柱失效分析","authors":"Mahadevan Pichandi, Jagadeesh Selvaraj","doi":"10.37285/ajmt.1.2.2","DOIUrl":null,"url":null,"abstract":"Irrespective of specific applications, the Small Commercial Vehicles (SCV) are always subjected to severe working conditions, especially the front wheels experience higher loads than design intended due to higher overloading by customers, driver abuse and frequent brake applications. The front axle wheels fasten system plays a key role for safety of the vehicle and pedestrian. The wheel separation can lead to serious injuries to passengers of the vehicle and pedestrian or from another vehicle maneuvering including fatalities. In this project investigation, the causes that promote failure of front axle wheels fasten system and subsequent wheels separation of SCV is analyzed carefully. Metallurgical analysis of the failed fasten system shows that it is characterized by a series of synergetic steps that include plastic deformation of nuts and studs caused due to disproportionate torque tightening practices. Also, the effect of other external factors that lead to deterioration of stud fatigue life such as road camber and driver abuse are analyzed. Based on this promise, the present investigation deals with detailed analysis of the root causes contributing such failures are analyzed and discussed in this paper. This study would help the fellow designers to select optimized fastening system considering all the parameters influencing wheel separation due to stud failures for SCV, passenger vehicles and heavy duty trucks.","PeriodicalId":294802,"journal":{"name":"ARAI Journal of Mobility Technology","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Failure Analysis of Front Axle Wheel Studs in Small Commercial Vehicles\",\"authors\":\"Mahadevan Pichandi, Jagadeesh Selvaraj\",\"doi\":\"10.37285/ajmt.1.2.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Irrespective of specific applications, the Small Commercial Vehicles (SCV) are always subjected to severe working conditions, especially the front wheels experience higher loads than design intended due to higher overloading by customers, driver abuse and frequent brake applications. The front axle wheels fasten system plays a key role for safety of the vehicle and pedestrian. The wheel separation can lead to serious injuries to passengers of the vehicle and pedestrian or from another vehicle maneuvering including fatalities. In this project investigation, the causes that promote failure of front axle wheels fasten system and subsequent wheels separation of SCV is analyzed carefully. Metallurgical analysis of the failed fasten system shows that it is characterized by a series of synergetic steps that include plastic deformation of nuts and studs caused due to disproportionate torque tightening practices. Also, the effect of other external factors that lead to deterioration of stud fatigue life such as road camber and driver abuse are analyzed. Based on this promise, the present investigation deals with detailed analysis of the root causes contributing such failures are analyzed and discussed in this paper. This study would help the fellow designers to select optimized fastening system considering all the parameters influencing wheel separation due to stud failures for SCV, passenger vehicles and heavy duty trucks.\",\"PeriodicalId\":294802,\"journal\":{\"name\":\"ARAI Journal of Mobility Technology\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ARAI Journal of Mobility Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37285/ajmt.1.2.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARAI Journal of Mobility Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37285/ajmt.1.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无论具体应用是什么,小型商用车(SCV)总是要承受恶劣的工作条件,尤其是前轮承受的载荷比设计预期的要高,这是由于客户超载、驾驶员滥用和频繁刹车造成的。前桥车轮紧固系统对车辆和行人的安全起着至关重要的作用。车轮分离可能导致车辆乘客和行人或其他车辆操纵的严重伤害,包括死亡。在本次工程调研中,对导致SCV前桥车轮扣紧系统失效及后续车轮分离的原因进行了详细分析。对失效紧固系统的冶金分析表明,它具有一系列协同步骤的特征,其中包括由于不成比例的扭矩紧固操作引起的螺母和螺柱的塑性变形。分析了道路倾角、驾驶员虐待等外部因素对螺栓疲劳寿命的影响。基于这一承诺,本文对造成此类故障的根本原因进行了详细的分析和讨论。该研究可帮助设计人员在考虑影响SCV、乘用车和重型卡车因螺柱失效而导致的车轮分离的所有参数的情况下,选择优化的紧固系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Failure Analysis of Front Axle Wheel Studs in Small Commercial Vehicles
Irrespective of specific applications, the Small Commercial Vehicles (SCV) are always subjected to severe working conditions, especially the front wheels experience higher loads than design intended due to higher overloading by customers, driver abuse and frequent brake applications. The front axle wheels fasten system plays a key role for safety of the vehicle and pedestrian. The wheel separation can lead to serious injuries to passengers of the vehicle and pedestrian or from another vehicle maneuvering including fatalities. In this project investigation, the causes that promote failure of front axle wheels fasten system and subsequent wheels separation of SCV is analyzed carefully. Metallurgical analysis of the failed fasten system shows that it is characterized by a series of synergetic steps that include plastic deformation of nuts and studs caused due to disproportionate torque tightening practices. Also, the effect of other external factors that lead to deterioration of stud fatigue life such as road camber and driver abuse are analyzed. Based on this promise, the present investigation deals with detailed analysis of the root causes contributing such failures are analyzed and discussed in this paper. This study would help the fellow designers to select optimized fastening system considering all the parameters influencing wheel separation due to stud failures for SCV, passenger vehicles and heavy duty trucks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Performance Assessment of Sizing of Electric Motor through Analytical Approach for Electric Vehicle Application Study on Various Position Sensing Technologies in Tractor Hitch Application Algorithm based Calibration Strategies in an Electric Powertrain Impact of Fused Deposition Modeling Process Parameters and Heat Treatment on Mechanical Characteristics and Product Quality: A Review Experimental Assessment of Genset Performance for PCCI-DI Combustion Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1