不完整数据的集成主动插值

Min Wang, Binqian Li, Fan Min, Jiaxue Liu, Manlong Wang
{"title":"不完整数据的集成主动插值","authors":"Min Wang, Binqian Li, Fan Min, Jiaxue Liu, Manlong Wang","doi":"10.1109/ICNSC48988.2020.9238068","DOIUrl":null,"url":null,"abstract":"Real data is often incomplete, which hinders its usability and learnability. A reasonable machine learning scenario is to obtain some values and labels at cost upon request. In this paper, we propose a new ensemble active missing imputation (EAMI) algorithm to handle the learning task. First, we design five missing imputation methods, including mean filling, cubic spline interpolation filling, sample-based collaborative filtering weighed filling, attribute-based collaborative filtering weighted filling and k-nearest neighbor (KNN) filling. Second, we propose an ensemble imputation model through the linear weighting of attribute prediction values. Third, We propose a three-way decisions model that uses the variance of the predicted values to fill in missing values by querying true label or using predicted values. We conduct experiments on University of California Irvine(UCI) datasets. The results of significance test verify the effectiveness of EAMI and its superiority over KNN missing data imputation algorithms.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"227 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ensemble active imputation for incomplete data\",\"authors\":\"Min Wang, Binqian Li, Fan Min, Jiaxue Liu, Manlong Wang\",\"doi\":\"10.1109/ICNSC48988.2020.9238068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real data is often incomplete, which hinders its usability and learnability. A reasonable machine learning scenario is to obtain some values and labels at cost upon request. In this paper, we propose a new ensemble active missing imputation (EAMI) algorithm to handle the learning task. First, we design five missing imputation methods, including mean filling, cubic spline interpolation filling, sample-based collaborative filtering weighed filling, attribute-based collaborative filtering weighted filling and k-nearest neighbor (KNN) filling. Second, we propose an ensemble imputation model through the linear weighting of attribute prediction values. Third, We propose a three-way decisions model that uses the variance of the predicted values to fill in missing values by querying true label or using predicted values. We conduct experiments on University of California Irvine(UCI) datasets. The results of significance test verify the effectiveness of EAMI and its superiority over KNN missing data imputation algorithms.\",\"PeriodicalId\":412290,\"journal\":{\"name\":\"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"227 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC48988.2020.9238068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

真实的数据往往是不完整的,这阻碍了它的可用性和可学习性。合理的机器学习场景是根据请求以成本获得一些值和标签。在本文中,我们提出了一种新的集成主动缺失输入(EAMI)算法来处理学习任务。首先,设计了均值填充、三次样条插值填充、基于样本的协同过滤加权填充、基于属性的协同过滤加权填充和k-最近邻(KNN)填充五种缺失填充方法。其次,通过属性预测值的线性加权,提出了一种集成估算模型。第三,我们提出了一个三向决策模型,通过查询真标签或使用预测值,利用预测值的方差来填补缺失值。我们在加州大学欧文分校(UCI)的数据集上进行实验。显著性检验的结果验证了EAMI算法的有效性及其相对于KNN缺失数据补全算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ensemble active imputation for incomplete data
Real data is often incomplete, which hinders its usability and learnability. A reasonable machine learning scenario is to obtain some values and labels at cost upon request. In this paper, we propose a new ensemble active missing imputation (EAMI) algorithm to handle the learning task. First, we design five missing imputation methods, including mean filling, cubic spline interpolation filling, sample-based collaborative filtering weighed filling, attribute-based collaborative filtering weighted filling and k-nearest neighbor (KNN) filling. Second, we propose an ensemble imputation model through the linear weighting of attribute prediction values. Third, We propose a three-way decisions model that uses the variance of the predicted values to fill in missing values by querying true label or using predicted values. We conduct experiments on University of California Irvine(UCI) datasets. The results of significance test verify the effectiveness of EAMI and its superiority over KNN missing data imputation algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Deep Multiple-input and Single-output PointNet for 3D Model Retrieval A Reinforcement Learning Based Medium Access Control Method for LoRa Networks A Novel Reinforcement-Learning-Based Approach to Scientific Workflow Scheduling Accelerated Latent Factor Analysis for Recommender Systems via PID Controller A Diverse Biases Non-negative Latent Factorization of Tensors Model for Dynamic Network Link Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1