{"title":"由三个输入光子驱动的二能级系统的原子激发","authors":"Z. Dong, Guofeng Zhang, Ai-Guo Wu","doi":"10.1109/ICNSC48988.2020.9238064","DOIUrl":null,"url":null,"abstract":"In this paper, the master equations for a two-level system driven by three photons has been derived. Particularly, the incident photons are distributed in two input channels, namely, the first input channel contains a two-photon state, while another single-photon state is in the second input channel. The excitation probabilities of the two-level system are simulated with different bandwidths of input photons. The influence of the number of input photons and channels on the atomic excitation is concluded.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Atomic excitation for a two-level system driven by three input photons\",\"authors\":\"Z. Dong, Guofeng Zhang, Ai-Guo Wu\",\"doi\":\"10.1109/ICNSC48988.2020.9238064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the master equations for a two-level system driven by three photons has been derived. Particularly, the incident photons are distributed in two input channels, namely, the first input channel contains a two-photon state, while another single-photon state is in the second input channel. The excitation probabilities of the two-level system are simulated with different bandwidths of input photons. The influence of the number of input photons and channels on the atomic excitation is concluded.\",\"PeriodicalId\":412290,\"journal\":{\"name\":\"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC48988.2020.9238064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Atomic excitation for a two-level system driven by three input photons
In this paper, the master equations for a two-level system driven by three photons has been derived. Particularly, the incident photons are distributed in two input channels, namely, the first input channel contains a two-photon state, while another single-photon state is in the second input channel. The excitation probabilities of the two-level system are simulated with different bandwidths of input photons. The influence of the number of input photons and channels on the atomic excitation is concluded.