分布式约束推理的通用隐私损失聚合框架

Jimmy Ho-man Lee, Terrence W.K. Mak, Yuxiang Shi
{"title":"分布式约束推理的通用隐私损失聚合框架","authors":"Jimmy Ho-man Lee, Terrence W.K. Mak, Yuxiang Shi","doi":"10.1109/ICTAI.2013.148","DOIUrl":null,"url":null,"abstract":"Distributed constraint solving are useful in tackling constrained problems when agents are not allowed to share his/her private information to others and/or gathering all necessary information to solve the problem in a centralized manner is infeasible. With these two limitations, distributed algorithms solve the problem by coordinating agents to negotiate with each other. However, once information is exchanged during negotiation, the private information may be leaked from one agent to another. We propose and design a framework based on Valuation of Possible States (VPS) to evaluate how well a distributed algorithm preserves the totality of all private information onthe entire system when solving distributed constraint optimization problems, by allowing the uses of different aggregators aggregating agents' individual privacy loss. Two classes of aggregators: idempotent aggregators and risk based aggregators are proposed. We further proposed generalized inference rules to infer privacy loss of individual agents. We implement our work on four distributed constraint solving algorithms: Synchronous Branch and Bound (SynchBB), Asynchronous Distributed Constraint Optimization (ADOPT), Branch and Bound ADOPT (BnB-ADOPT), and Distributed Pseudo-tree Optimization Procedure (DPOP). Preliminary experimental evaluations on two benchmarks, Distributed Multi-Event Scheduling Problem (DiMES) and Random Distributed COP, comparing the four algorithms are performed.","PeriodicalId":140309,"journal":{"name":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A General Privacy Loss Aggregation Framework for Distributed Constraint Reasoning\",\"authors\":\"Jimmy Ho-man Lee, Terrence W.K. Mak, Yuxiang Shi\",\"doi\":\"10.1109/ICTAI.2013.148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed constraint solving are useful in tackling constrained problems when agents are not allowed to share his/her private information to others and/or gathering all necessary information to solve the problem in a centralized manner is infeasible. With these two limitations, distributed algorithms solve the problem by coordinating agents to negotiate with each other. However, once information is exchanged during negotiation, the private information may be leaked from one agent to another. We propose and design a framework based on Valuation of Possible States (VPS) to evaluate how well a distributed algorithm preserves the totality of all private information onthe entire system when solving distributed constraint optimization problems, by allowing the uses of different aggregators aggregating agents' individual privacy loss. Two classes of aggregators: idempotent aggregators and risk based aggregators are proposed. We further proposed generalized inference rules to infer privacy loss of individual agents. We implement our work on four distributed constraint solving algorithms: Synchronous Branch and Bound (SynchBB), Asynchronous Distributed Constraint Optimization (ADOPT), Branch and Bound ADOPT (BnB-ADOPT), and Distributed Pseudo-tree Optimization Procedure (DPOP). Preliminary experimental evaluations on two benchmarks, Distributed Multi-Event Scheduling Problem (DiMES) and Random Distributed COP, comparing the four algorithms are performed.\",\"PeriodicalId\":140309,\"journal\":{\"name\":\"2013 IEEE 25th International Conference on Tools with Artificial Intelligence\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 25th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2013.148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2013.148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当代理不允许与他人共享他/她的私人信息,或者以集中的方式收集所有必要的信息来解决问题是不可行的时候,分布式约束求解在解决约束问题时是有用的。考虑到这两个限制,分布式算法通过协调代理相互协商来解决问题。然而,一旦在协商过程中交换信息,私有信息可能会从一个代理泄露到另一个代理。我们提出并设计了一个基于可能状态评估(VPS)的框架,通过允许使用不同的聚合器聚合代理的个人隐私损失,来评估分布式算法在解决分布式约束优化问题时如何很好地保留整个系统上所有隐私信息的总量。提出了两类聚类:幂等聚类和基于风险的聚类。我们进一步提出了广义推理规则来推断个体代理的隐私损失。我们实现了四种分布式约束求解算法:同步分支与绑定(SynchBB)、异步分布式约束优化(ADOPT)、分支与绑定采用(BnB-ADOPT)和分布式伪树优化程序(DPOP)。在分布式多事件调度问题(DiMES)和随机分布式COP两个基准上进行了初步的实验评估,比较了四种算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A General Privacy Loss Aggregation Framework for Distributed Constraint Reasoning
Distributed constraint solving are useful in tackling constrained problems when agents are not allowed to share his/her private information to others and/or gathering all necessary information to solve the problem in a centralized manner is infeasible. With these two limitations, distributed algorithms solve the problem by coordinating agents to negotiate with each other. However, once information is exchanged during negotiation, the private information may be leaked from one agent to another. We propose and design a framework based on Valuation of Possible States (VPS) to evaluate how well a distributed algorithm preserves the totality of all private information onthe entire system when solving distributed constraint optimization problems, by allowing the uses of different aggregators aggregating agents' individual privacy loss. Two classes of aggregators: idempotent aggregators and risk based aggregators are proposed. We further proposed generalized inference rules to infer privacy loss of individual agents. We implement our work on four distributed constraint solving algorithms: Synchronous Branch and Bound (SynchBB), Asynchronous Distributed Constraint Optimization (ADOPT), Branch and Bound ADOPT (BnB-ADOPT), and Distributed Pseudo-tree Optimization Procedure (DPOP). Preliminary experimental evaluations on two benchmarks, Distributed Multi-Event Scheduling Problem (DiMES) and Random Distributed COP, comparing the four algorithms are performed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Automatic Algorithm Selection Approach for Planning Learning Useful Macro-actions for Planning with N-Grams Optimizing Dynamic Ensemble Selection Procedure by Evolutionary Extreme Learning Machines and a Noise Reduction Filter Motion-Driven Action-Based Planning Assessing Procedural Knowledge in Free-Text Answers through a Hybrid Semantic Web Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1