{"title":"电动汽车用永磁同步电机齿槽减矩综合设计与研究","authors":"Shivani Jitendra Khare, R. S. Ambekar","doi":"10.37285/ajmt.2.3.7","DOIUrl":null,"url":null,"abstract":"Owing to high efficiency, high power density, high torque to current ratio and high power to weight ratio, application of Permanent Magnet Synchronous drives has been escalating in electric vehicle traction systems. The major concern arises due to increase in cogging torque ripples. The presence of internal harmonic content leading to noise and vibrational disturbances, greatly sways the smooth operation of the motor. To address this challenge is the key to design of Permanent magnet Synchronous motor. Numerous techniques have been enacted upon for truncating the cogging torque thereby increasing the efficiency for electric vehicle application. This paper presents an exhaustive study on the methods adopted and proposes an optimised model for analysing the effect of skewing in Interior Permanent Magnet Synchronous Motor. Furthermore, the optimal design conclusions based on the proposed shape optimization were confirmed by finite element analysis (FEA) method carried out on RMxprt tool of ANSYS software.","PeriodicalId":294802,"journal":{"name":"ARAI Journal of Mobility Technology","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Design and Study on Cogging Torque Reduction in Permanent Magnet Synchronous Motors for Electric Vehicle Technology\",\"authors\":\"Shivani Jitendra Khare, R. S. Ambekar\",\"doi\":\"10.37285/ajmt.2.3.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to high efficiency, high power density, high torque to current ratio and high power to weight ratio, application of Permanent Magnet Synchronous drives has been escalating in electric vehicle traction systems. The major concern arises due to increase in cogging torque ripples. The presence of internal harmonic content leading to noise and vibrational disturbances, greatly sways the smooth operation of the motor. To address this challenge is the key to design of Permanent magnet Synchronous motor. Numerous techniques have been enacted upon for truncating the cogging torque thereby increasing the efficiency for electric vehicle application. This paper presents an exhaustive study on the methods adopted and proposes an optimised model for analysing the effect of skewing in Interior Permanent Magnet Synchronous Motor. Furthermore, the optimal design conclusions based on the proposed shape optimization were confirmed by finite element analysis (FEA) method carried out on RMxprt tool of ANSYS software.\",\"PeriodicalId\":294802,\"journal\":{\"name\":\"ARAI Journal of Mobility Technology\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ARAI Journal of Mobility Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37285/ajmt.2.3.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARAI Journal of Mobility Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37285/ajmt.2.3.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comprehensive Design and Study on Cogging Torque Reduction in Permanent Magnet Synchronous Motors for Electric Vehicle Technology
Owing to high efficiency, high power density, high torque to current ratio and high power to weight ratio, application of Permanent Magnet Synchronous drives has been escalating in electric vehicle traction systems. The major concern arises due to increase in cogging torque ripples. The presence of internal harmonic content leading to noise and vibrational disturbances, greatly sways the smooth operation of the motor. To address this challenge is the key to design of Permanent magnet Synchronous motor. Numerous techniques have been enacted upon for truncating the cogging torque thereby increasing the efficiency for electric vehicle application. This paper presents an exhaustive study on the methods adopted and proposes an optimised model for analysing the effect of skewing in Interior Permanent Magnet Synchronous Motor. Furthermore, the optimal design conclusions based on the proposed shape optimization were confirmed by finite element analysis (FEA) method carried out on RMxprt tool of ANSYS software.