一种用于新型人工喉的投票和预测神经网络系统

M. J. Russell, D. Rubin, T. Marwala, B. Wigdorowitz
{"title":"一种用于新型人工喉的投票和预测神经网络系统","authors":"M. J. Russell, D. Rubin, T. Marwala, B. Wigdorowitz","doi":"10.1109/ICBPE.2009.5384105","DOIUrl":null,"url":null,"abstract":"A new artificial Larynx is currently under development at the University of the Witwatersrand, Johannesburg. This device uses dynamic tongue movement from a palatometer system to infer what the user is trying to say. Feature selection algorithms extract information from the palatometer data and are then used as input to a Multi-Layer Perceptron Neural Network. This paper deals with improving the success rate of the Neural Networks by using a voting system as well as a word prediction system. By using a voting system unknown non-rejected input words were correctly identified 93.5% of the time, while the system has a rejection rate of 17.36%. A set of grammar rules were developed for the word set and this improved the number of correct unknown, non-rejected words to 94.14% but increased the rejection rate to 17.74%.","PeriodicalId":384086,"journal":{"name":"2009 International Conference on Biomedical and Pharmaceutical Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A voting and predictive Neural Network system for use in a new artificial Larynx\",\"authors\":\"M. J. Russell, D. Rubin, T. Marwala, B. Wigdorowitz\",\"doi\":\"10.1109/ICBPE.2009.5384105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new artificial Larynx is currently under development at the University of the Witwatersrand, Johannesburg. This device uses dynamic tongue movement from a palatometer system to infer what the user is trying to say. Feature selection algorithms extract information from the palatometer data and are then used as input to a Multi-Layer Perceptron Neural Network. This paper deals with improving the success rate of the Neural Networks by using a voting system as well as a word prediction system. By using a voting system unknown non-rejected input words were correctly identified 93.5% of the time, while the system has a rejection rate of 17.36%. A set of grammar rules were developed for the word set and this improved the number of correct unknown, non-rejected words to 94.14% but increased the rejection rate to 17.74%.\",\"PeriodicalId\":384086,\"journal\":{\"name\":\"2009 International Conference on Biomedical and Pharmaceutical Engineering\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Biomedical and Pharmaceutical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBPE.2009.5384105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Biomedical and Pharmaceutical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBPE.2009.5384105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

约翰内斯堡的威特沃特斯兰德大学目前正在开发一种新的人工喉头。这个装置利用舌测系统的动态舌头运动来推断使用者想要说什么。特征选择算法从测腭数据中提取信息,然后作为多层感知器神经网络的输入。本文讨论了使用投票系统和单词预测系统来提高神经网络的成功率。通过使用投票系统,未知的未被拒绝的输入词的正确率为93.5%,而系统的拒绝率为17.36%。为单词集开发了一套语法规则,这将正确的未知、未被拒绝的单词数量提高到94.14%,但将拒绝率提高到17.74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A voting and predictive Neural Network system for use in a new artificial Larynx
A new artificial Larynx is currently under development at the University of the Witwatersrand, Johannesburg. This device uses dynamic tongue movement from a palatometer system to infer what the user is trying to say. Feature selection algorithms extract information from the palatometer data and are then used as input to a Multi-Layer Perceptron Neural Network. This paper deals with improving the success rate of the Neural Networks by using a voting system as well as a word prediction system. By using a voting system unknown non-rejected input words were correctly identified 93.5% of the time, while the system has a rejection rate of 17.36%. A set of grammar rules were developed for the word set and this improved the number of correct unknown, non-rejected words to 94.14% but increased the rejection rate to 17.74%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Noise reduction in DEXA image based on system noise modeling Feature selection and classification for Wireless Capsule Endoscopic frames The unique gene expression profile of the anti-tumour agent, cisplatin, compared with its clinically ineffective isomer, transplatin Genome-Wide Association study for glaucoma A surgical training simulator for temporal bone anatomy education
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1