{"title":"绿色发光二极管的终极固态照明","authors":"J. Lee, Y. Tsai, C. Bayram","doi":"10.1109/CSW55288.2022.9930416","DOIUrl":null,"url":null,"abstract":"Cubic GaN is a promising platform for realizing high-efficiency green light emitting diodes, suitable for closing the green gap and enabling color-mixed solid-state lighting applications. Still, there are almost no studies on such LEDs and none showing how cubic GaN LED design rules compare to or differentiate against conventional hexagonal and nonpolar ones. Here, using the Open Boundary Quantum LED Simulator, we present design guidelines for highly efficient cubic green LEDs and detail the inherent advantages and design differences between polar, nonpolar, and cubic GaN LEDs.","PeriodicalId":382443,"journal":{"name":"2022 Compound Semiconductor Week (CSW)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green Light Emitting Diodes for the Ultimate Solid-State Lighting\",\"authors\":\"J. Lee, Y. Tsai, C. Bayram\",\"doi\":\"10.1109/CSW55288.2022.9930416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cubic GaN is a promising platform for realizing high-efficiency green light emitting diodes, suitable for closing the green gap and enabling color-mixed solid-state lighting applications. Still, there are almost no studies on such LEDs and none showing how cubic GaN LED design rules compare to or differentiate against conventional hexagonal and nonpolar ones. Here, using the Open Boundary Quantum LED Simulator, we present design guidelines for highly efficient cubic green LEDs and detail the inherent advantages and design differences between polar, nonpolar, and cubic GaN LEDs.\",\"PeriodicalId\":382443,\"journal\":{\"name\":\"2022 Compound Semiconductor Week (CSW)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Compound Semiconductor Week (CSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSW55288.2022.9930416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Compound Semiconductor Week (CSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSW55288.2022.9930416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Green Light Emitting Diodes for the Ultimate Solid-State Lighting
Cubic GaN is a promising platform for realizing high-efficiency green light emitting diodes, suitable for closing the green gap and enabling color-mixed solid-state lighting applications. Still, there are almost no studies on such LEDs and none showing how cubic GaN LED design rules compare to or differentiate against conventional hexagonal and nonpolar ones. Here, using the Open Boundary Quantum LED Simulator, we present design guidelines for highly efficient cubic green LEDs and detail the inherent advantages and design differences between polar, nonpolar, and cubic GaN LEDs.