通过研究漏极滞后瞬态,优化掺C缓冲层以减小A10.83 I n0.17 N/GaN HEMT的电流崩溃

Sayan Mukherjee, S. Kanaga, N. Dasgupta, A. DasGupta
{"title":"通过研究漏极滞后瞬态,优化掺C缓冲层以减小A10.83 I n0.17 N/GaN HEMT的电流崩溃","authors":"Sayan Mukherjee, S. Kanaga, N. Dasgupta, A. DasGupta","doi":"10.1109/WiPDAAsia49671.2020.9360261","DOIUrl":null,"url":null,"abstract":"The performances of GaN-based HEMTs as RF power amplifiers are limited by reliability issues such as current collapse. C-doping in GaN buffers reduces butter leakage and improves breakdown voltage but at the same time, introduces acceptor traps leading to current collapse. In this paper, butter trapping effects have been studied for different AlInN/GaN HEMTs in light of drain lag transients. Three different GaN butter structures have been considered. Initially, HEMT having unintentionally doped GaN butter is fabricated, and its experimental results are used for simulation validation. Then, simulation models are extended for HEMTs having C-doped buffers. In the simulations, acceptor type of traps are considered in the doped GaN butter layers. Self-heating effects are also taken into account. The drain lag turn-on mixed-mode 2D TCAD simulations are carried out to analyze the dynamic responses. An optimum butter structure is proposed based on transient results. A two-layer butter having an unintentionally doped GaN layer near the channel and C-doping in the rest shows minimum butter trapping effects. The optimum thickness of the unintentionally doped layer is estimated as 400 nm. Further simulations reveal the impact of C-doped layer thickness and trap concentrations in drain lag transients.","PeriodicalId":432666,"journal":{"name":"2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"optimization of C Doped Buffer Layer to Minimize Current Collapse in A10.83 I n0.17 N/GaN HEMT by Studying Drain Lag Transients\",\"authors\":\"Sayan Mukherjee, S. Kanaga, N. Dasgupta, A. DasGupta\",\"doi\":\"10.1109/WiPDAAsia49671.2020.9360261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performances of GaN-based HEMTs as RF power amplifiers are limited by reliability issues such as current collapse. C-doping in GaN buffers reduces butter leakage and improves breakdown voltage but at the same time, introduces acceptor traps leading to current collapse. In this paper, butter trapping effects have been studied for different AlInN/GaN HEMTs in light of drain lag transients. Three different GaN butter structures have been considered. Initially, HEMT having unintentionally doped GaN butter is fabricated, and its experimental results are used for simulation validation. Then, simulation models are extended for HEMTs having C-doped buffers. In the simulations, acceptor type of traps are considered in the doped GaN butter layers. Self-heating effects are also taken into account. The drain lag turn-on mixed-mode 2D TCAD simulations are carried out to analyze the dynamic responses. An optimum butter structure is proposed based on transient results. A two-layer butter having an unintentionally doped GaN layer near the channel and C-doping in the rest shows minimum butter trapping effects. The optimum thickness of the unintentionally doped layer is estimated as 400 nm. Further simulations reveal the impact of C-doped layer thickness and trap concentrations in drain lag transients.\",\"PeriodicalId\":432666,\"journal\":{\"name\":\"2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)\",\"volume\":\"04 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WiPDAAsia49671.2020.9360261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WiPDAAsia49671.2020.9360261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于氮化镓的hemt作为射频功率放大器的性能受到电流崩溃等可靠性问题的限制。氮化镓缓冲器中掺杂c可以减少黄油泄漏并提高击穿电压,但同时引入受体陷阱导致电流崩溃。本文从漏极滞后瞬态的角度研究了不同alin /GaN hemt的黄油捕获效应。考虑了三种不同的氮化镓黄油结构。首先制备了无意掺杂GaN黄油的HEMT,并将实验结果用于仿真验证。然后,扩展了具有掺杂c缓冲的hemt的仿真模型。在模拟中,考虑了掺杂氮化镓黄油层中的受体型陷阱。自热效应也被考虑在内。通过漏极滞后导通混合模式二维TCAD仿真,分析了系统的动态响应。基于瞬态结果,提出了一种优化的黄油结构。在沟道附近无意掺杂GaN层,其余部分掺杂c的两层黄油显示出最小的黄油捕获效应。非故意掺杂层的最佳厚度估计为400 nm。进一步的模拟揭示了c掺杂层厚度和陷阱浓度对漏极滞后瞬态的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
optimization of C Doped Buffer Layer to Minimize Current Collapse in A10.83 I n0.17 N/GaN HEMT by Studying Drain Lag Transients
The performances of GaN-based HEMTs as RF power amplifiers are limited by reliability issues such as current collapse. C-doping in GaN buffers reduces butter leakage and improves breakdown voltage but at the same time, introduces acceptor traps leading to current collapse. In this paper, butter trapping effects have been studied for different AlInN/GaN HEMTs in light of drain lag transients. Three different GaN butter structures have been considered. Initially, HEMT having unintentionally doped GaN butter is fabricated, and its experimental results are used for simulation validation. Then, simulation models are extended for HEMTs having C-doped buffers. In the simulations, acceptor type of traps are considered in the doped GaN butter layers. Self-heating effects are also taken into account. The drain lag turn-on mixed-mode 2D TCAD simulations are carried out to analyze the dynamic responses. An optimum butter structure is proposed based on transient results. A two-layer butter having an unintentionally doped GaN layer near the channel and C-doping in the rest shows minimum butter trapping effects. The optimum thickness of the unintentionally doped layer is estimated as 400 nm. Further simulations reveal the impact of C-doped layer thickness and trap concentrations in drain lag transients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
General Equation to Determine Design Rules for Mitigating Partial Discharge and Electrical Breakdown in Power Module Layouts The Path Forward for GaN Power Devices A Variable DC-Link Voltage Determination Method for Motor Drives with SiC MOSFETs High Electron Mobility of 1880 cm2 V-S In0.17 Al0.83N/GaN-on-Si HEMTs with GaN Cap Layer Substrate Effects in GaN-on-Si Integrated Bridge Circuit and Proposal of Engineered Bulk Silicon Substrate for GaN Power ICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1