基于深度学习模型的文本摘要器自动生成学习对象

Leandro Massetti Ribeiro Oliveira, A. Busson, Carlos de Salles S. Neto, G. Santos, S. Colcher
{"title":"基于深度学习模型的文本摘要器自动生成学习对象","authors":"Leandro Massetti Ribeiro Oliveira, A. Busson, Carlos de Salles S. Neto, G. Santos, S. Colcher","doi":"10.5753/sbie.2021.217360","DOIUrl":null,"url":null,"abstract":"A learning object (LO) is an entity, digital or not, that can be used and reused or referenced during a technological support process for teaching and learning. Despite mainly being multimedia, with audio, video, text and images synchronized with each other, LOs can help disseminate knowledge even only in educational texts. However, creating these texts can be costly in time and effort, creating the need to seek new ways to generate this content. This article presents a solution for the generation of text-based LOs generated through summaries supported by Deep Learning models. The present work was evaluated in a supervised experiment in which volunteers rate computer educational texts generated by three types of summarizers. The results presented are positive and allow us to compare the performance of summaries as LO generators in text format. The findings also suggest that using post-processing in the output of models can improve the readability of generated content.","PeriodicalId":298990,"journal":{"name":"Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Generation of Learning Objects Using Text Summarizer Based on Deep Learning Models\",\"authors\":\"Leandro Massetti Ribeiro Oliveira, A. Busson, Carlos de Salles S. Neto, G. Santos, S. Colcher\",\"doi\":\"10.5753/sbie.2021.217360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A learning object (LO) is an entity, digital or not, that can be used and reused or referenced during a technological support process for teaching and learning. Despite mainly being multimedia, with audio, video, text and images synchronized with each other, LOs can help disseminate knowledge even only in educational texts. However, creating these texts can be costly in time and effort, creating the need to seek new ways to generate this content. This article presents a solution for the generation of text-based LOs generated through summaries supported by Deep Learning models. The present work was evaluated in a supervised experiment in which volunteers rate computer educational texts generated by three types of summarizers. The results presented are positive and allow us to compare the performance of summaries as LO generators in text format. The findings also suggest that using post-processing in the output of models can improve the readability of generated content.\",\"PeriodicalId\":298990,\"journal\":{\"name\":\"Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbie.2021.217360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbie.2021.217360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

学习对象(LO)是一个实体,可以是数字化的,也可以不是数字化的,它可以在教学和学习的技术支持过程中被使用和重用或引用。尽管LOs主要是多媒体,音频、视频、文本和图像相互同步,但它可以帮助传播知识,即使只是在教育文本中。然而,创建这些文本在时间和精力上都是昂贵的,因此需要寻找新的方法来生成这些内容。本文提出了一种通过深度学习模型支持的摘要生成基于文本的LOs的解决方案。目前的工作是在一个有监督的实验中进行评估的,在这个实验中,志愿者对三种类型的总结器生成的计算机教育文本进行评分。给出的结果是肯定的,并且允许我们比较摘要作为文本格式的LO生成器的性能。研究结果还表明,在模型输出中使用后处理可以提高生成内容的可读性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Generation of Learning Objects Using Text Summarizer Based on Deep Learning Models
A learning object (LO) is an entity, digital or not, that can be used and reused or referenced during a technological support process for teaching and learning. Despite mainly being multimedia, with audio, video, text and images synchronized with each other, LOs can help disseminate knowledge even only in educational texts. However, creating these texts can be costly in time and effort, creating the need to seek new ways to generate this content. This article presents a solution for the generation of text-based LOs generated through summaries supported by Deep Learning models. The present work was evaluated in a supervised experiment in which volunteers rate computer educational texts generated by three types of summarizers. The results presented are positive and allow us to compare the performance of summaries as LO generators in text format. The findings also suggest that using post-processing in the output of models can improve the readability of generated content.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
O Pensamento Computacional como base para o ensino-aprendizagem de matemática através da OBMEP Materiais didáticos utilizados nas formações de professores em Pensamento Computacional Gamificando o Ensino de Programação de Computadores: um Mapeamento Sistemático Representação da Interação em Fóruns de Discussão On-line: uma Revisão Sistemática Integrativa Students' perceptions of academic performance in Distance Education evaluated by Learning Analytics and Ontologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1