基于策略梯度强化学习的变压器网络2.5 d / 3d集成电路最优解耦电容设计方法

Hyunwook Park, Minsu Kim, Subin Kim, Seungtaek Jeong, Seongguk Kim, Hyungmin Kang, Keunwoo Kim, Keeyoung Son, Gapyeol Park, Kyungjune Son, Taein Shin, Joungho Kim
{"title":"基于策略梯度强化学习的变压器网络2.5 d / 3d集成电路最优解耦电容设计方法","authors":"Hyunwook Park, Minsu Kim, Subin Kim, Seungtaek Jeong, Seongguk Kim, Hyungmin Kang, Keunwoo Kim, Keeyoung Son, Gapyeol Park, Kyungjune Son, Taein Shin, Joungho Kim","doi":"10.1109/EDAPS50281.2020.9312908","DOIUrl":null,"url":null,"abstract":"In this paper, we first propose a policy gradient reinforcement learning (RL)-based optimal decoupling capacitor (decap) design method for 2.5-D/3-D integrated circuits (ICs) using a transformer network. The proposed method can provide an optimal decap design that meets target impedance. Unlike previous value-based RL methods with simple value approximators such as multi-layer perceptron (MLP) and convolutional neural network (CNN), the proposed method directly parameterizes policy using an attention-based transformer network model. The model is trained through the policy gradient algorithm so that it can achieve larger action space, i.e. search space. For verification, we applied the proposed method to a test hierarchical power distribution network (PDN). We compared convergence results depending on the action space with the previous value-based RL method. As a result, it is validated that the proposed method can cover ×4 times larger action space than that of the previous work.","PeriodicalId":137699,"journal":{"name":"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Policy Gradient Reinforcement Learning-based Optimal Decoupling Capacitor Design Method for 2.5-D/3-D ICs using Transformer Network\",\"authors\":\"Hyunwook Park, Minsu Kim, Subin Kim, Seungtaek Jeong, Seongguk Kim, Hyungmin Kang, Keunwoo Kim, Keeyoung Son, Gapyeol Park, Kyungjune Son, Taein Shin, Joungho Kim\",\"doi\":\"10.1109/EDAPS50281.2020.9312908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first propose a policy gradient reinforcement learning (RL)-based optimal decoupling capacitor (decap) design method for 2.5-D/3-D integrated circuits (ICs) using a transformer network. The proposed method can provide an optimal decap design that meets target impedance. Unlike previous value-based RL methods with simple value approximators such as multi-layer perceptron (MLP) and convolutional neural network (CNN), the proposed method directly parameterizes policy using an attention-based transformer network model. The model is trained through the policy gradient algorithm so that it can achieve larger action space, i.e. search space. For verification, we applied the proposed method to a test hierarchical power distribution network (PDN). We compared convergence results depending on the action space with the previous value-based RL method. As a result, it is validated that the proposed method can cover ×4 times larger action space than that of the previous work.\",\"PeriodicalId\":137699,\"journal\":{\"name\":\"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDAPS50281.2020.9312908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS50281.2020.9312908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们首先提出了一种基于策略梯度强化学习(RL)的2.5 d /3-D集成电路(ic)的最佳去耦电容(decap)设计方法,该方法使用变压器网络。该方法可以提供满足目标阻抗的最优封装设计。与以往基于值的RL方法使用简单的值逼近器(如多层感知器(MLP)和卷积神经网络(CNN))不同,该方法使用基于注意力的变压器网络模型直接参数化策略。通过策略梯度算法对模型进行训练,使其达到更大的动作空间,即搜索空间。为了验证,我们将该方法应用于一个测试的分层配电网络(PDN)。我们将基于动作空间的收敛结果与之前基于值的RL方法进行了比较。结果验证了所提方法覆盖的动作空间比以往的工作大×4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Policy Gradient Reinforcement Learning-based Optimal Decoupling Capacitor Design Method for 2.5-D/3-D ICs using Transformer Network
In this paper, we first propose a policy gradient reinforcement learning (RL)-based optimal decoupling capacitor (decap) design method for 2.5-D/3-D integrated circuits (ICs) using a transformer network. The proposed method can provide an optimal decap design that meets target impedance. Unlike previous value-based RL methods with simple value approximators such as multi-layer perceptron (MLP) and convolutional neural network (CNN), the proposed method directly parameterizes policy using an attention-based transformer network model. The model is trained through the policy gradient algorithm so that it can achieve larger action space, i.e. search space. For verification, we applied the proposed method to a test hierarchical power distribution network (PDN). We compared convergence results depending on the action space with the previous value-based RL method. As a result, it is validated that the proposed method can cover ×4 times larger action space than that of the previous work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gaussian Process surrogate model for variability analysis of RF circuits Power Distribution Network Optimization for On-Die Regulator with Laplace Transform Technique Multiphysics challenges with Heterogeneous Integrated Voltage Regulator based Power Delivery Architectures Sub-picosecond Skew Matching On Die SSN Methodology for High Speed IO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1