一种有效的基于EEMD方法的动脉血压信号处理系统

Shang-Yi Chuang, Jia-Ju Liao, Chia-Ching Chou, Chia-Chi Chang, W. Fang
{"title":"一种有效的基于EEMD方法的动脉血压信号处理系统","authors":"Shang-Yi Chuang, Jia-Ju Liao, Chia-Ching Chou, Chia-Chi Chang, W. Fang","doi":"10.1109/VLSI-DAT.2014.6834884","DOIUrl":null,"url":null,"abstract":"This study proposed an effective signal processing system based on Ensemble Empirical Mode Decomposition (EEMD) method for the analysis of arterial blood pressure (ABP). The whole system was implemented on an ARM-based SoC development platform to attain the on-line non-stationary signal processing. A non-invasive blood pressure acquisition device (NIBP100D) was used to record the continuous ABP as the input signal. According to the non-stationary characteristics of ABP, EEMD is useful to achieve accurate decomposition for ABP spectral analysis. The signal was decomposed into several Intrinsic Mode Functions (IMFs) by EEMD, and quantitatively assessed by fast Fourier transform (FFT). The results showed that the proposed EEMD processor can effectively solve the mode mixing problem of Empirical Mode Decomposition (EMD) and the FFT spectrum of IMF5, IMF6, and IMF7 to reveal heart rate and respiration.","PeriodicalId":267124,"journal":{"name":"Technical Papers of 2014 International Symposium on VLSI Design, Automation and Test","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An effective arterial blood pressure signal processing system based on EEMD method\",\"authors\":\"Shang-Yi Chuang, Jia-Ju Liao, Chia-Ching Chou, Chia-Chi Chang, W. Fang\",\"doi\":\"10.1109/VLSI-DAT.2014.6834884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposed an effective signal processing system based on Ensemble Empirical Mode Decomposition (EEMD) method for the analysis of arterial blood pressure (ABP). The whole system was implemented on an ARM-based SoC development platform to attain the on-line non-stationary signal processing. A non-invasive blood pressure acquisition device (NIBP100D) was used to record the continuous ABP as the input signal. According to the non-stationary characteristics of ABP, EEMD is useful to achieve accurate decomposition for ABP spectral analysis. The signal was decomposed into several Intrinsic Mode Functions (IMFs) by EEMD, and quantitatively assessed by fast Fourier transform (FFT). The results showed that the proposed EEMD processor can effectively solve the mode mixing problem of Empirical Mode Decomposition (EMD) and the FFT spectrum of IMF5, IMF6, and IMF7 to reveal heart rate and respiration.\",\"PeriodicalId\":267124,\"journal\":{\"name\":\"Technical Papers of 2014 International Symposium on VLSI Design, Automation and Test\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Papers of 2014 International Symposium on VLSI Design, Automation and Test\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSI-DAT.2014.6834884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Papers of 2014 International Symposium on VLSI Design, Automation and Test","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-DAT.2014.6834884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究提出了一种有效的基于集成经验模态分解(EEMD)方法的动脉血压(ABP)信号处理系统。整个系统在基于arm的SoC开发平台上实现,实现了非平稳信号的在线处理。采用无创血压采集仪(NIBP100D)记录连续ABP作为输入信号。由于ABP的非平稳特性,EEMD有助于实现ABP光谱分析的精确分解。利用EEMD将信号分解为多个本征模态函数(IMFs),并用快速傅里叶变换(FFT)对信号进行定量评价。结果表明,所提出的EEMD处理器能够有效解决经验模态分解(EMD)的模态混合问题和IMF5、IMF6、IMF7的FFT谱来揭示心率和呼吸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An effective arterial blood pressure signal processing system based on EEMD method
This study proposed an effective signal processing system based on Ensemble Empirical Mode Decomposition (EEMD) method for the analysis of arterial blood pressure (ABP). The whole system was implemented on an ARM-based SoC development platform to attain the on-line non-stationary signal processing. A non-invasive blood pressure acquisition device (NIBP100D) was used to record the continuous ABP as the input signal. According to the non-stationary characteristics of ABP, EEMD is useful to achieve accurate decomposition for ABP spectral analysis. The signal was decomposed into several Intrinsic Mode Functions (IMFs) by EEMD, and quantitatively assessed by fast Fourier transform (FFT). The results showed that the proposed EEMD processor can effectively solve the mode mixing problem of Empirical Mode Decomposition (EMD) and the FFT spectrum of IMF5, IMF6, and IMF7 to reveal heart rate and respiration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Will reliability limit Moore's law? Apply high-level synthesis design and verification methodology on floating-point unit implementation An integrated boost converter with maximum power point tracking for solar photovoltaic energy harvesting An FPGA implementation of high-throughput key-value store using Bloom filter A low-area digitalized channel selection filter for DSRC system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1