Sang-Hoon Kim, Hoon Shin, Youngkyun Jeong, Junehee Lee, Jaehyuk Choi, J. Chun
{"title":"用于CMOS图像传感器系统的12gb /s双通道收发器","authors":"Sang-Hoon Kim, Hoon Shin, Youngkyun Jeong, Junehee Lee, Jaehyuk Choi, J. Chun","doi":"10.1109/ESSCIRC.2016.7598300","DOIUrl":null,"url":null,"abstract":"We propose a dual-channel interface architecture that allocates high and low transition-density bit streams to two separate channels. The transmitter utilizes the stacked drivers with charge-recycling to reduce the power consumption. The DC-coupled receiver front-end circuits deal with the common-mode level variations and compensate for the channel loss. The tracked oversampling CDR which realizes fast lock acquisition below 1 baud period and low logic latency is shared by the two channels. Fabricated in a 65-nm low-power CMOS technology, the dual-channel transceiver achieves 12-Gb/s data rate while the transmitter consumes 20.43mW from a 1.2V power supply.","PeriodicalId":246471,"journal":{"name":"ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A 12-Gb/s dual-channel transceiver for CMOS image sensor systems\",\"authors\":\"Sang-Hoon Kim, Hoon Shin, Youngkyun Jeong, Junehee Lee, Jaehyuk Choi, J. Chun\",\"doi\":\"10.1109/ESSCIRC.2016.7598300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a dual-channel interface architecture that allocates high and low transition-density bit streams to two separate channels. The transmitter utilizes the stacked drivers with charge-recycling to reduce the power consumption. The DC-coupled receiver front-end circuits deal with the common-mode level variations and compensate for the channel loss. The tracked oversampling CDR which realizes fast lock acquisition below 1 baud period and low logic latency is shared by the two channels. Fabricated in a 65-nm low-power CMOS technology, the dual-channel transceiver achieves 12-Gb/s data rate while the transmitter consumes 20.43mW from a 1.2V power supply.\",\"PeriodicalId\":246471,\"journal\":{\"name\":\"ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC.2016.7598300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2016.7598300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 12-Gb/s dual-channel transceiver for CMOS image sensor systems
We propose a dual-channel interface architecture that allocates high and low transition-density bit streams to two separate channels. The transmitter utilizes the stacked drivers with charge-recycling to reduce the power consumption. The DC-coupled receiver front-end circuits deal with the common-mode level variations and compensate for the channel loss. The tracked oversampling CDR which realizes fast lock acquisition below 1 baud period and low logic latency is shared by the two channels. Fabricated in a 65-nm low-power CMOS technology, the dual-channel transceiver achieves 12-Gb/s data rate while the transmitter consumes 20.43mW from a 1.2V power supply.