Harry H. Chen, Shih-Hua Kuo, Jonathan Tung, M. Chao
{"title":"使用压力测试数据预测系统级故障的统计技术","authors":"Harry H. Chen, Shih-Hua Kuo, Jonathan Tung, M. Chao","doi":"10.1109/VTS.2015.7116260","DOIUrl":null,"url":null,"abstract":"In this paper we describe a novel scheme for collecting and analyzing a chip's failure signature. Incorrect outputs of digital chips are forced by applying scan patterns under non-destructive stress conditions. From binary mismatch responses collected in continue-on-fail mode, numeric data features are formed by grouping and counting mismatches in each group, thus defining a chip's “analog” failure signature. We use machine learning to explore prediction models of system-level test (SLT) failures by comparing signatures of chip samples from known SLT pass/fail bins. Important features that clearly separate the SLT pass/fail chips are identified. Experimental results are presented for a 28-nm 1.2-GHz quad-core low-power processor.","PeriodicalId":187545,"journal":{"name":"2015 IEEE 33rd VLSI Test Symposium (VTS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Statistical techniques for predicting system-level failure using stress-test data\",\"authors\":\"Harry H. Chen, Shih-Hua Kuo, Jonathan Tung, M. Chao\",\"doi\":\"10.1109/VTS.2015.7116260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe a novel scheme for collecting and analyzing a chip's failure signature. Incorrect outputs of digital chips are forced by applying scan patterns under non-destructive stress conditions. From binary mismatch responses collected in continue-on-fail mode, numeric data features are formed by grouping and counting mismatches in each group, thus defining a chip's “analog” failure signature. We use machine learning to explore prediction models of system-level test (SLT) failures by comparing signatures of chip samples from known SLT pass/fail bins. Important features that clearly separate the SLT pass/fail chips are identified. Experimental results are presented for a 28-nm 1.2-GHz quad-core low-power processor.\",\"PeriodicalId\":187545,\"journal\":{\"name\":\"2015 IEEE 33rd VLSI Test Symposium (VTS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 33rd VLSI Test Symposium (VTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTS.2015.7116260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 33rd VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2015.7116260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Statistical techniques for predicting system-level failure using stress-test data
In this paper we describe a novel scheme for collecting and analyzing a chip's failure signature. Incorrect outputs of digital chips are forced by applying scan patterns under non-destructive stress conditions. From binary mismatch responses collected in continue-on-fail mode, numeric data features are formed by grouping and counting mismatches in each group, thus defining a chip's “analog” failure signature. We use machine learning to explore prediction models of system-level test (SLT) failures by comparing signatures of chip samples from known SLT pass/fail bins. Important features that clearly separate the SLT pass/fail chips are identified. Experimental results are presented for a 28-nm 1.2-GHz quad-core low-power processor.