基于泰勒展开线性化的部分形式无模型自适应控制

Xiaolin Guo, R. Chi, Na Lin, Yang Liu
{"title":"基于泰勒展开线性化的部分形式无模型自适应控制","authors":"Xiaolin Guo, R. Chi, Na Lin, Yang Liu","doi":"10.1109/ICIST55546.2022.9926850","DOIUrl":null,"url":null,"abstract":"In this paper, a Taylor expansion linearization-based partial-form model-free adaptive control (TELPF-MFAC) method is proposed, which provides a new way to solve complex nonlinear nonaffine systems. The unknown nonlinear nonaffine system is transformed into a new linear data model (LDM) with a nonlinear residual term. Unknown parameters in LDM are estimated by an adaptive updating mechanism. By utilizing ad-ditional control knowledge in both the control and the parameter updating law, the performance of the proposed method can be improved consequently. Simulation study shows the effectiveness of the proposed TELPF-MFAC.","PeriodicalId":211213,"journal":{"name":"2022 12th International Conference on Information Science and Technology (ICIST)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taylor Expansion Linearization-Based Partial-Form Model-Free Adaptive Control\",\"authors\":\"Xiaolin Guo, R. Chi, Na Lin, Yang Liu\",\"doi\":\"10.1109/ICIST55546.2022.9926850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a Taylor expansion linearization-based partial-form model-free adaptive control (TELPF-MFAC) method is proposed, which provides a new way to solve complex nonlinear nonaffine systems. The unknown nonlinear nonaffine system is transformed into a new linear data model (LDM) with a nonlinear residual term. Unknown parameters in LDM are estimated by an adaptive updating mechanism. By utilizing ad-ditional control knowledge in both the control and the parameter updating law, the performance of the proposed method can be improved consequently. Simulation study shows the effectiveness of the proposed TELPF-MFAC.\",\"PeriodicalId\":211213,\"journal\":{\"name\":\"2022 12th International Conference on Information Science and Technology (ICIST)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 12th International Conference on Information Science and Technology (ICIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST55546.2022.9926850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST55546.2022.9926850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于Taylor展开线性化的部分形式无模型自适应控制(TELPF-MFAC)方法,为求解复杂非线性非仿射系统提供了一种新的方法。将未知的非线性非仿射系统转化为具有非线性残差项的线性数据模型(LDM)。采用自适应更新机制对LDM中的未知参数进行估计。通过在控制律和参数更新律中引入额外的控制知识,可以提高该方法的性能。仿真研究表明了所提出的TELPF-MFAC的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Taylor Expansion Linearization-Based Partial-Form Model-Free Adaptive Control
In this paper, a Taylor expansion linearization-based partial-form model-free adaptive control (TELPF-MFAC) method is proposed, which provides a new way to solve complex nonlinear nonaffine systems. The unknown nonlinear nonaffine system is transformed into a new linear data model (LDM) with a nonlinear residual term. Unknown parameters in LDM are estimated by an adaptive updating mechanism. By utilizing ad-ditional control knowledge in both the control and the parameter updating law, the performance of the proposed method can be improved consequently. Simulation study shows the effectiveness of the proposed TELPF-MFAC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Marine Aquaculture Information Extraction from Optical Remote Sensing Images via MDOAU2-net A hybrid intelligent system for assisting low-vision people with over-the-counter medication Practical Adaptive Event-triggered Finite-time Stabilization for A Class of Second-order Systems Neurodynamics-based Iteratively Reweighted Convex Optimization for Sparse Signal Reconstruction A novel energy carbon emission codes based carbon efficiency evaluation method for enterprises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1