无反射共模抑制的平衡带通滤波器

Ting-Yi Lin, Tzong-Lin Wu
{"title":"无反射共模抑制的平衡带通滤波器","authors":"Ting-Yi Lin, Tzong-Lin Wu","doi":"10.1109/EDAPS.2016.7893114","DOIUrl":null,"url":null,"abstract":"A compact balanced bandpass filter using two types of LC resonator and quarter-wavelength resonator is proposed in this paper. By taking the advantage of the property of quarter-wavelength resonator and symmetry of the proposed circuit, a bandpass response can be achieved while the band stop response can be achieved at the same frequency band. Parallel LC resonator shunt to the ground is used for the differential bandpass response and series LC resonator shunt to the ground via a resistor is used for the common-mode suppression response. For the purpose of a non-reflected suppression of the common mode noise, a resistor matching to the port impedance is connected to the end of a series LC resonator. By doing so, a single frequency point common-mode noise suppression can be achieved at the desired band. The proposed circuit is analyzed and experimented carefully. The validity of this structure is demonstrated by the experiment result on a 2.4GHz filter.","PeriodicalId":191549,"journal":{"name":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","volume":"84 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Balanced bandpass filter with reflectionless common-mode suppression\",\"authors\":\"Ting-Yi Lin, Tzong-Lin Wu\",\"doi\":\"10.1109/EDAPS.2016.7893114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A compact balanced bandpass filter using two types of LC resonator and quarter-wavelength resonator is proposed in this paper. By taking the advantage of the property of quarter-wavelength resonator and symmetry of the proposed circuit, a bandpass response can be achieved while the band stop response can be achieved at the same frequency band. Parallel LC resonator shunt to the ground is used for the differential bandpass response and series LC resonator shunt to the ground via a resistor is used for the common-mode suppression response. For the purpose of a non-reflected suppression of the common mode noise, a resistor matching to the port impedance is connected to the end of a series LC resonator. By doing so, a single frequency point common-mode noise suppression can be achieved at the desired band. The proposed circuit is analyzed and experimented carefully. The validity of this structure is demonstrated by the experiment result on a 2.4GHz filter.\",\"PeriodicalId\":191549,\"journal\":{\"name\":\"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"volume\":\"84 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDAPS.2016.7893114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS.2016.7893114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种采用LC谐振器和四分之一波长谐振器的紧凑平衡带通滤波器。利用四分之一波长谐振腔的特性和电路的对称性,可以在同一频段内实现带通响应和带阻响应。并联到地的LC谐振器用于差分带通响应,通过电阻并联到地的串联LC谐振器用于共模抑制响应。为了对共模噪声进行非反射抑制,将一个与端口阻抗匹配的电阻连接到串联LC谐振器的末端。通过这样做,可以在期望的频带上实现单频点共模噪声抑制。对所提出的电路进行了仔细的分析和实验。在2.4GHz滤波器上的实验结果验证了该结构的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Balanced bandpass filter with reflectionless common-mode suppression
A compact balanced bandpass filter using two types of LC resonator and quarter-wavelength resonator is proposed in this paper. By taking the advantage of the property of quarter-wavelength resonator and symmetry of the proposed circuit, a bandpass response can be achieved while the band stop response can be achieved at the same frequency band. Parallel LC resonator shunt to the ground is used for the differential bandpass response and series LC resonator shunt to the ground via a resistor is used for the common-mode suppression response. For the purpose of a non-reflected suppression of the common mode noise, a resistor matching to the port impedance is connected to the end of a series LC resonator. By doing so, a single frequency point common-mode noise suppression can be achieved at the desired band. The proposed circuit is analyzed and experimented carefully. The validity of this structure is demonstrated by the experiment result on a 2.4GHz filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced macromodels of high-speed low-power differential drivers Broadband material model identification with GMS-parameters Modeling of power distribution networks for path finding 36-GHz-bandwidth quad-channel driver module using compact QFN package for optical coherent systems Evaluation of near-singular integrals for quadrilateral basis in integral equation solver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1