太空中的人工智能:应用实例和挑战

G. Furano, A. Tavoularis, M. Rovatti
{"title":"太空中的人工智能:应用实例和挑战","authors":"G. Furano, A. Tavoularis, M. Rovatti","doi":"10.1109/DFT50435.2020.9250908","DOIUrl":null,"url":null,"abstract":"While AI is being successfully applied in space (e.g. in the areas of enhanced monitoring and diagnostics, in prediction, image analysis etc.), it is still not applied on-board.Many potential applications could benefit from AI on-board capabilities at different levels. Probably the most straightforward approach is the use of AI for remote sensing missions at payload processing level to perform image processing tasks. Nevertheless, other applications at instrument, satellite or system levels could also represent important breakthroughs in the way we use and operate satellites for any kind of mission.A possible way forward would be to train machine learning models on-ground, up-link the trained models and use them on-board. This would enable an increased level of autonomy (e.g. opportunistic science) and added-value on-board, for a little extra computational cost. Even the most computational intensive AI models (e.g. deep learning) have now versions that allow trained models to be run on smartphones (“on the edge”).","PeriodicalId":340119,"journal":{"name":"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"AI in space: applications examples and challenges\",\"authors\":\"G. Furano, A. Tavoularis, M. Rovatti\",\"doi\":\"10.1109/DFT50435.2020.9250908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While AI is being successfully applied in space (e.g. in the areas of enhanced monitoring and diagnostics, in prediction, image analysis etc.), it is still not applied on-board.Many potential applications could benefit from AI on-board capabilities at different levels. Probably the most straightforward approach is the use of AI for remote sensing missions at payload processing level to perform image processing tasks. Nevertheless, other applications at instrument, satellite or system levels could also represent important breakthroughs in the way we use and operate satellites for any kind of mission.A possible way forward would be to train machine learning models on-ground, up-link the trained models and use them on-board. This would enable an increased level of autonomy (e.g. opportunistic science) and added-value on-board, for a little extra computational cost. Even the most computational intensive AI models (e.g. deep learning) have now versions that allow trained models to be run on smartphones (“on the edge”).\",\"PeriodicalId\":340119,\"journal\":{\"name\":\"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"volume\":\"224 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT50435.2020.9250908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT50435.2020.9250908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

虽然人工智能在太空中得到了成功的应用(例如在加强监测和诊断、预测、图像分析等领域),但它仍然没有在飞船上得到应用。许多潜在的应用都可以从不同级别的人工智能车载功能中受益。可能最直接的方法是在有效载荷处理级别使用人工智能进行遥感任务,以执行图像处理任务。然而,在仪器、卫星或系统层面的其他应用也可能代表我们为任何类型的任务使用和操作卫星的方式取得重大突破。一种可能的方法是在地面上训练机器学习模型,将训练好的模型连接起来,然后在飞机上使用它们。这将提高自主性(例如机会主义科学)和附加价值,只需要一点点额外的计算成本。即使是计算最密集的人工智能模型(例如深度学习)现在也有允许训练模型在智能手机上运行的版本(“边缘”)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI in space: applications examples and challenges
While AI is being successfully applied in space (e.g. in the areas of enhanced monitoring and diagnostics, in prediction, image analysis etc.), it is still not applied on-board.Many potential applications could benefit from AI on-board capabilities at different levels. Probably the most straightforward approach is the use of AI for remote sensing missions at payload processing level to perform image processing tasks. Nevertheless, other applications at instrument, satellite or system levels could also represent important breakthroughs in the way we use and operate satellites for any kind of mission.A possible way forward would be to train machine learning models on-ground, up-link the trained models and use them on-board. This would enable an increased level of autonomy (e.g. opportunistic science) and added-value on-board, for a little extra computational cost. Even the most computational intensive AI models (e.g. deep learning) have now versions that allow trained models to be run on smartphones (“on the edge”).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Variation-Aware Test for Logic Interconnects using Neural Networks – A Case Study A Pipelined Multi-Level Fault Injector for Deep Neural Networks Reliable Classification with Ensemble Convolutional Neural Networks Hardware Accelerator Design with Supervised Machine Learning for Solar Particle Event Prediction Latest Trends in Hardware Security and Privacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1