Shervin Roshanisefat, Hadi Mardani Kamali, K. Z. Azar, Sai Manoj Pudukotai Dinakarrao, Naghmeh Karimi, H. Homayoun, Avesta Sasan
{"title":"DFSSD:深故障和浅状态对偶,扫描链受限访问电路的一种可证明的强混淆解","authors":"Shervin Roshanisefat, Hadi Mardani Kamali, K. Z. Azar, Sai Manoj Pudukotai Dinakarrao, Naghmeh Karimi, H. Homayoun, Avesta Sasan","doi":"10.1109/VTS48691.2020.9107629","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce DFSSD, a novel logic locking solution for sequential and FSM circuits with a restricted (locked) access to the scan chain. DFSSD combines two techniques for obfuscation: (1) Deep Faults, and (2) Shallow State Duality. Both techniques are specifically designed to resist against sequential SAT attacks based on bounded model checking. The shallow state duality prevents a sequential SAT attack from taking a shortcut for early termination without running an exhaustive unbounded model checker to assess if the attack could be terminated. The deep fault, on the other hand, provides a designer with a technique for building deep, yet key recoverable faults that could not be discovered by sequential SAT (and bounded model checker based) attacks in a reasonable time.","PeriodicalId":326132,"journal":{"name":"2020 IEEE 38th VLSI Test Symposium (VTS)","volume":"46 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"DFSSD: Deep Faults and Shallow State Duality, A Provably Strong Obfuscation Solution for Circuits with Restricted Access to Scan Chain\",\"authors\":\"Shervin Roshanisefat, Hadi Mardani Kamali, K. Z. Azar, Sai Manoj Pudukotai Dinakarrao, Naghmeh Karimi, H. Homayoun, Avesta Sasan\",\"doi\":\"10.1109/VTS48691.2020.9107629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce DFSSD, a novel logic locking solution for sequential and FSM circuits with a restricted (locked) access to the scan chain. DFSSD combines two techniques for obfuscation: (1) Deep Faults, and (2) Shallow State Duality. Both techniques are specifically designed to resist against sequential SAT attacks based on bounded model checking. The shallow state duality prevents a sequential SAT attack from taking a shortcut for early termination without running an exhaustive unbounded model checker to assess if the attack could be terminated. The deep fault, on the other hand, provides a designer with a technique for building deep, yet key recoverable faults that could not be discovered by sequential SAT (and bounded model checker based) attacks in a reasonable time.\",\"PeriodicalId\":326132,\"journal\":{\"name\":\"2020 IEEE 38th VLSI Test Symposium (VTS)\",\"volume\":\"46 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 38th VLSI Test Symposium (VTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTS48691.2020.9107629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 38th VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS48691.2020.9107629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DFSSD: Deep Faults and Shallow State Duality, A Provably Strong Obfuscation Solution for Circuits with Restricted Access to Scan Chain
In this paper, we introduce DFSSD, a novel logic locking solution for sequential and FSM circuits with a restricted (locked) access to the scan chain. DFSSD combines two techniques for obfuscation: (1) Deep Faults, and (2) Shallow State Duality. Both techniques are specifically designed to resist against sequential SAT attacks based on bounded model checking. The shallow state duality prevents a sequential SAT attack from taking a shortcut for early termination without running an exhaustive unbounded model checker to assess if the attack could be terminated. The deep fault, on the other hand, provides a designer with a technique for building deep, yet key recoverable faults that could not be discovered by sequential SAT (and bounded model checker based) attacks in a reasonable time.