{"title":"利用铁磁流体模具制备聚合物三维微结构","authors":"W. Song, H. Kim, C. Son, B. Ziaie","doi":"10.1109/MEMSYS.2006.1627804","DOIUrl":null,"url":null,"abstract":"In this paper, we report a new and simple fabrication method for 3-D polymeric microstructures using low viscosity mineral oil-based ferrofluids in combination with polydimethylsiloxane (PDMS) and UV curable epoxy. The diameter and height of ferrofluid spikes/domes which usually form upon the application of a magnetic field was controlled by a micromachined membrane having holes of various dimensions. Holes or various dimensions (60, 100, and 200 µ m) were fabricated in a thin silicon membrane covering a ferrofluid reservoir. The heights of fabricated polymeric microstructures corresponding to the above mentioned hole sizes were equal to the hole diameters, while their base diameters were reduced by 10-30%. This approach provides a new technique to easily fabricate various size 3-D micro-structures on the same plane by controlling the magnetic field strength, ferrofluid viscosity, and hole dimensions.","PeriodicalId":250831,"journal":{"name":"19th IEEE International Conference on Micro Electro Mechanical Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Fabrication of Polymeric 3-D Micro-Structures Using Ferrofluid Molds\",\"authors\":\"W. Song, H. Kim, C. Son, B. Ziaie\",\"doi\":\"10.1109/MEMSYS.2006.1627804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we report a new and simple fabrication method for 3-D polymeric microstructures using low viscosity mineral oil-based ferrofluids in combination with polydimethylsiloxane (PDMS) and UV curable epoxy. The diameter and height of ferrofluid spikes/domes which usually form upon the application of a magnetic field was controlled by a micromachined membrane having holes of various dimensions. Holes or various dimensions (60, 100, and 200 µ m) were fabricated in a thin silicon membrane covering a ferrofluid reservoir. The heights of fabricated polymeric microstructures corresponding to the above mentioned hole sizes were equal to the hole diameters, while their base diameters were reduced by 10-30%. This approach provides a new technique to easily fabricate various size 3-D micro-structures on the same plane by controlling the magnetic field strength, ferrofluid viscosity, and hole dimensions.\",\"PeriodicalId\":250831,\"journal\":{\"name\":\"19th IEEE International Conference on Micro Electro Mechanical Systems\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"19th IEEE International Conference on Micro Electro Mechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2006.1627804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th IEEE International Conference on Micro Electro Mechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2006.1627804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication of Polymeric 3-D Micro-Structures Using Ferrofluid Molds
In this paper, we report a new and simple fabrication method for 3-D polymeric microstructures using low viscosity mineral oil-based ferrofluids in combination with polydimethylsiloxane (PDMS) and UV curable epoxy. The diameter and height of ferrofluid spikes/domes which usually form upon the application of a magnetic field was controlled by a micromachined membrane having holes of various dimensions. Holes or various dimensions (60, 100, and 200 µ m) were fabricated in a thin silicon membrane covering a ferrofluid reservoir. The heights of fabricated polymeric microstructures corresponding to the above mentioned hole sizes were equal to the hole diameters, while their base diameters were reduced by 10-30%. This approach provides a new technique to easily fabricate various size 3-D micro-structures on the same plane by controlling the magnetic field strength, ferrofluid viscosity, and hole dimensions.