利用机器学习改进先进晶圆厂宽带等离子体检测的在线检测

SM Guo, Jx Liu, R. Navalakhe, A. Lee, B. Tsai, Mahatma Lin, M. Plihal, Jianyun Zhou
{"title":"利用机器学习改进先进晶圆厂宽带等离子体检测的在线检测","authors":"SM Guo, Jx Liu, R. Navalakhe, A. Lee, B. Tsai, Mahatma Lin, M. Plihal, Jianyun Zhou","doi":"10.1109/ASMC.2019.8791796","DOIUrl":null,"url":null,"abstract":"For inline defect inspection it is important to achieve a high capture rate of defects of interest (DOI) at low nuisance rate to increase production efficiency. A broadband plasma (BBP) wafer defect inspection system with Inline Defect Organizer™ (iDO) can separate DOI and nuisance defects into different bins.However, high expertise is required to set up an effective iDO™ classifier. Traditional iDO setup complexity increases as design rules shrink. A novel approach is developed by adopting machine learning algorithms and SEM-classified defect data to create a new iDO classifier (a.k.a. iDO 2.0). The results are promising, showing that iDO 2.0 classifier outperforms the iDO in sensitivity, nuisance rate, ease of use, time to results and cross- device portability.","PeriodicalId":287541,"journal":{"name":"2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Inline Inspection Improvement using Machine Learning on Broadband Plasma Inspector in an Advanced Foundry Fab\",\"authors\":\"SM Guo, Jx Liu, R. Navalakhe, A. Lee, B. Tsai, Mahatma Lin, M. Plihal, Jianyun Zhou\",\"doi\":\"10.1109/ASMC.2019.8791796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For inline defect inspection it is important to achieve a high capture rate of defects of interest (DOI) at low nuisance rate to increase production efficiency. A broadband plasma (BBP) wafer defect inspection system with Inline Defect Organizer™ (iDO) can separate DOI and nuisance defects into different bins.However, high expertise is required to set up an effective iDO™ classifier. Traditional iDO setup complexity increases as design rules shrink. A novel approach is developed by adopting machine learning algorithms and SEM-classified defect data to create a new iDO classifier (a.k.a. iDO 2.0). The results are promising, showing that iDO 2.0 classifier outperforms the iDO in sensitivity, nuisance rate, ease of use, time to results and cross- device portability.\",\"PeriodicalId\":287541,\"journal\":{\"name\":\"2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC.2019.8791796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC.2019.8791796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于在线缺陷检测来说,在低妨害率下实现高兴趣缺陷(DOI)捕获率是提高生产效率的重要途径。宽带等离子体(BBP)晶圆缺陷检测系统与内联缺陷组织者™(iDO)可以分离DOI和滋扰缺陷到不同的箱。然而,建立一个有效的iDO™分类器需要很高的专业知识。传统的iDO设置复杂性随着设计规则的缩减而增加。采用机器学习算法和sem分类的缺陷数据来创建新的iDO分类器(也称为iDO 2.0)。结果表明,iDO 2.0分类器在灵敏度、干扰率、易用性、获得结果的时间和跨设备可移植性方面优于iDO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inline Inspection Improvement using Machine Learning on Broadband Plasma Inspector in an Advanced Foundry Fab
For inline defect inspection it is important to achieve a high capture rate of defects of interest (DOI) at low nuisance rate to increase production efficiency. A broadband plasma (BBP) wafer defect inspection system with Inline Defect Organizer™ (iDO) can separate DOI and nuisance defects into different bins.However, high expertise is required to set up an effective iDO™ classifier. Traditional iDO setup complexity increases as design rules shrink. A novel approach is developed by adopting machine learning algorithms and SEM-classified defect data to create a new iDO classifier (a.k.a. iDO 2.0). The results are promising, showing that iDO 2.0 classifier outperforms the iDO in sensitivity, nuisance rate, ease of use, time to results and cross- device portability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and accurate defect classification for CMP process monitoring A Deep Learning Model for Identification of Defect Patterns in Semiconductor Wafer Map The Etching of Silicon Nitride in Phosphoric Acid with Novel Single Wafer Processor Methods for RFSOI Damascene Tungsten Contact Etching Using High-Speed Video Analysis for Defect Investigation and Process Improvement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1