{"title":"卷积ICA的预测矩阵方法","authors":"L. K. Hansen, M. Dyrholm","doi":"10.1109/NNSP.2003.1318024","DOIUrl":null,"url":null,"abstract":"A linear prediction approach reduces convolutive independent component analysis (ICA) to the following three steps: solution of a set of multivariate linear prediction problems, a linear multivariate deconvolution problem with known matrix coefficients, and finally solution of a conventional instantaneous mixing ICA problem.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A prediction matrix approach to convolutive ICA\",\"authors\":\"L. K. Hansen, M. Dyrholm\",\"doi\":\"10.1109/NNSP.2003.1318024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A linear prediction approach reduces convolutive independent component analysis (ICA) to the following three steps: solution of a set of multivariate linear prediction problems, a linear multivariate deconvolution problem with known matrix coefficients, and finally solution of a conventional instantaneous mixing ICA problem.\",\"PeriodicalId\":315958,\"journal\":{\"name\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2003.1318024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A linear prediction approach reduces convolutive independent component analysis (ICA) to the following three steps: solution of a set of multivariate linear prediction problems, a linear multivariate deconvolution problem with known matrix coefficients, and finally solution of a conventional instantaneous mixing ICA problem.