具有肖特基隧道源极和漏极的新型石墨烯沟道场效应晶体管

Jing Zhu, J. Woo
{"title":"具有肖特基隧道源极和漏极的新型石墨烯沟道场效应晶体管","authors":"Jing Zhu, J. Woo","doi":"10.1109/ESSDERC.2007.4430923","DOIUrl":null,"url":null,"abstract":"In this paper, a novel concept of graphene channel FET with highly doped silicon source/drain is proposed. The current-voltage characteristics are analyzed and the optimized design parameters are presented by numerical analysis and device simulation. Such novel graphene channel MOSFETs on FDSOI or on insulator are found to have much superior current drive and transconductance than silicon MOSFETs.","PeriodicalId":103959,"journal":{"name":"ESSDERC 2007 - 37th European Solid State Device Research Conference","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A novel graphene channel field effect transistor with Schottky tunneling source and drain\",\"authors\":\"Jing Zhu, J. Woo\",\"doi\":\"10.1109/ESSDERC.2007.4430923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel concept of graphene channel FET with highly doped silicon source/drain is proposed. The current-voltage characteristics are analyzed and the optimized design parameters are presented by numerical analysis and device simulation. Such novel graphene channel MOSFETs on FDSOI or on insulator are found to have much superior current drive and transconductance than silicon MOSFETs.\",\"PeriodicalId\":103959,\"journal\":{\"name\":\"ESSDERC 2007 - 37th European Solid State Device Research Conference\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSDERC 2007 - 37th European Solid State Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSDERC.2007.4430923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSDERC 2007 - 37th European Solid State Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2007.4430923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文提出了一种高掺杂硅源极/漏极石墨烯沟道场效应管的新概念。通过数值分析和器件仿真,分析了电流-电压特性,给出了优化设计参数。这种新型的石墨烯沟道mosfet在FDSOI或绝缘体上具有比硅mosfet更好的电流驱动和跨导性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel graphene channel field effect transistor with Schottky tunneling source and drain
In this paper, a novel concept of graphene channel FET with highly doped silicon source/drain is proposed. The current-voltage characteristics are analyzed and the optimized design parameters are presented by numerical analysis and device simulation. Such novel graphene channel MOSFETs on FDSOI or on insulator are found to have much superior current drive and transconductance than silicon MOSFETs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
1T-capacitorless bulk memory: Scalability and signal impact Anisotropy of electron mobility in arbitrarily oriented FinFETs Self-aligned μTrench phase-change memory cell architecture for 90nm technology and beyond Critique of high-frequency performance of carbon nanotube FETs Analytical and compact modelling of the I-MOS (impact ionization MOS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1