指纹识别中有监督机器学习分类算法的评价

Andres Rojas, G. Dolecek
{"title":"指纹识别中有监督机器学习分类算法的评价","authors":"Andres Rojas, G. Dolecek","doi":"10.1109/GC-ElecEng52322.2021.9788164","DOIUrl":null,"url":null,"abstract":"This paper presents the application of the Classification Learner MATLAB tool from the Statistics and Machine Learning Toolbox for the classification process in a fingerprint recognition system based on the set B from the public databases FVC2000, FVC2002, and FVC2004. The general results indicate that this system can achieve high accuracy values for several sub-databases using multiple supervised machine learning algorithms including decision trees, discriminant analysis, support vector machines, logistic regression, nearest neighbors, naive Bayes, and ensemble classifiers. The highest accuracy value of 98.8% corresponding to the DB3-2000 subset was obtained using the ensemble subspace discriminant classifier.","PeriodicalId":344268,"journal":{"name":"2021 Global Congress on Electrical Engineering (GC-ElecEng)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of Supervised Machine Learning Classification Algorithms for Fingerprint Recognition\",\"authors\":\"Andres Rojas, G. Dolecek\",\"doi\":\"10.1109/GC-ElecEng52322.2021.9788164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the application of the Classification Learner MATLAB tool from the Statistics and Machine Learning Toolbox for the classification process in a fingerprint recognition system based on the set B from the public databases FVC2000, FVC2002, and FVC2004. The general results indicate that this system can achieve high accuracy values for several sub-databases using multiple supervised machine learning algorithms including decision trees, discriminant analysis, support vector machines, logistic regression, nearest neighbors, naive Bayes, and ensemble classifiers. The highest accuracy value of 98.8% corresponding to the DB3-2000 subset was obtained using the ensemble subspace discriminant classifier.\",\"PeriodicalId\":344268,\"journal\":{\"name\":\"2021 Global Congress on Electrical Engineering (GC-ElecEng)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Global Congress on Electrical Engineering (GC-ElecEng)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GC-ElecEng52322.2021.9788164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Global Congress on Electrical Engineering (GC-ElecEng)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GC-ElecEng52322.2021.9788164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了基于公共数据库FVC2000、FVC2002和FVC2004的集合B的指纹识别系统中,统计与机器学习工具箱中的Classification Learner MATLAB工具在分类过程中的应用。总体结果表明,该系统使用多种监督机器学习算法,包括决策树、判别分析、支持向量机、逻辑回归、最近邻、朴素贝叶斯和集成分类器,可以在多个子数据库中获得较高的准确率值。采用集成子空间判别分类器,得到了DB3-2000子集对应的最高准确率值98.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Supervised Machine Learning Classification Algorithms for Fingerprint Recognition
This paper presents the application of the Classification Learner MATLAB tool from the Statistics and Machine Learning Toolbox for the classification process in a fingerprint recognition system based on the set B from the public databases FVC2000, FVC2002, and FVC2004. The general results indicate that this system can achieve high accuracy values for several sub-databases using multiple supervised machine learning algorithms including decision trees, discriminant analysis, support vector machines, logistic regression, nearest neighbors, naive Bayes, and ensemble classifiers. The highest accuracy value of 98.8% corresponding to the DB3-2000 subset was obtained using the ensemble subspace discriminant classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Frequency and Radiation Pattern Reconfigurable Multiband Microstrip Monopole Antenna Performance Evaluation of Blockchain Consensus Algorithms for Electronic Health Record Sharing Tracking Control of a Piezoelectric Actuator with Hysteresis Compensation Using Fuzzy Logic with Feed-Forward Controller UHF Radio Extender System for Ship to Shore Communications Using 3D SBR for Positioning Bicycle Sharing System Using an IoT Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1