基于鲸鱼优化算法的特征选择方法

Marwa Sharawi, Hossam M. Zawbaa, E. Emary
{"title":"基于鲸鱼优化算法的特征选择方法","authors":"Marwa Sharawi, Hossam M. Zawbaa, E. Emary","doi":"10.1109/ICACI.2017.7974502","DOIUrl":null,"url":null,"abstract":"In this paper, a feature selection system is introduced applies the whale optimization algorithm (WOA). WOA is a recently introduced meta-heuristic optimization algorithm that mimics the natural behavior of the humpback whales. The proposed model applies the wrapper-based method to reach the optimal subset of features. This technique was applied to find the best feature subset that maximizes the accuracy of the classification while preserving the minimum number of features. The proposed model is compared with the particle swarm optimization (PSO) and genetic algorithm (GA) using a number of assessment indicators on 16 different data-sets from UCI data repository. The results demonstrate the advantage of the introduced algorithm compared to the other optimizers.","PeriodicalId":260701,"journal":{"name":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","volume":"149 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"Feature selection approach based on whale optimization algorithm\",\"authors\":\"Marwa Sharawi, Hossam M. Zawbaa, E. Emary\",\"doi\":\"10.1109/ICACI.2017.7974502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a feature selection system is introduced applies the whale optimization algorithm (WOA). WOA is a recently introduced meta-heuristic optimization algorithm that mimics the natural behavior of the humpback whales. The proposed model applies the wrapper-based method to reach the optimal subset of features. This technique was applied to find the best feature subset that maximizes the accuracy of the classification while preserving the minimum number of features. The proposed model is compared with the particle swarm optimization (PSO) and genetic algorithm (GA) using a number of assessment indicators on 16 different data-sets from UCI data repository. The results demonstrate the advantage of the introduced algorithm compared to the other optimizers.\",\"PeriodicalId\":260701,\"journal\":{\"name\":\"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"149 9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2017.7974502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2017.7974502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

摘要

本文介绍了一种应用鲸鱼优化算法(WOA)的特征选择系统。WOA是最近引入的一种元启发式优化算法,它模仿了座头鲸的自然行为。该模型采用基于包装器的方法来获得最优的特征子集。该技术用于寻找在保留最小特征数量的同时使分类精度最大化的最佳特征子集。在UCI数据库的16个不同数据集上,采用多个评价指标,将该模型与粒子群算法(PSO)和遗传算法(GA)进行了比较。结果表明,与其他优化器相比,所引入的算法具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature selection approach based on whale optimization algorithm
In this paper, a feature selection system is introduced applies the whale optimization algorithm (WOA). WOA is a recently introduced meta-heuristic optimization algorithm that mimics the natural behavior of the humpback whales. The proposed model applies the wrapper-based method to reach the optimal subset of features. This technique was applied to find the best feature subset that maximizes the accuracy of the classification while preserving the minimum number of features. The proposed model is compared with the particle swarm optimization (PSO) and genetic algorithm (GA) using a number of assessment indicators on 16 different data-sets from UCI data repository. The results demonstrate the advantage of the introduced algorithm compared to the other optimizers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blood vessel segmentation in retinal images using echo state networks Global mean square exponential synchronization of stochastic neural networks with time-varying delays Navigation of mobile robot with cooperation of quadcopter Impact of grey wolf optimization on WSN cluster formation and lifetime expansion The optimization of vehicle routing of communal waste in an urban environment using a nearest neighbirs' algorithm and genetic algorithm: Communal waste vehicle routing optimization in urban areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1