Y. Yamaguchi, J. Kamioka, M. Hangai, S. Shinjo, K. Yamanaka
{"title":"采用单指大信号模型设计了一种带门距的连续波20W ka波段GaN高功率MMIC放大器","authors":"Y. Yamaguchi, J. Kamioka, M. Hangai, S. Shinjo, K. Yamanaka","doi":"10.1109/CSICS.2017.8240422","DOIUrl":null,"url":null,"abstract":"This paper reports a 20 W Ka-band GaN high power MMIC (Monolithic Microwave Integrated Circuit) amplifier under continuous wave (CW) operation. The one-finger large signal models were made to take account of both the phase difference of RF gate voltage at a gate feeder and thermal effect. By using this model, the gate pitch length of unit cell transistor was optimally designed to obtain maximum output power as MMIC amplifier under CW operation. As a result, 21.7W output power under CW operation was successfully achieved with power added efficiency (PAE) of 19.8% at Ka-band by a single-ended MMIC. To the best of authors' knowledge, this output power is state-of-the-art for GaN MMIC amplifiers under CW operation at Ka-band.","PeriodicalId":129729,"journal":{"name":"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A CW 20W Ka-band GaN high power MMIC amplifier with a gate pitch designed by using one-finger large signal models\",\"authors\":\"Y. Yamaguchi, J. Kamioka, M. Hangai, S. Shinjo, K. Yamanaka\",\"doi\":\"10.1109/CSICS.2017.8240422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a 20 W Ka-band GaN high power MMIC (Monolithic Microwave Integrated Circuit) amplifier under continuous wave (CW) operation. The one-finger large signal models were made to take account of both the phase difference of RF gate voltage at a gate feeder and thermal effect. By using this model, the gate pitch length of unit cell transistor was optimally designed to obtain maximum output power as MMIC amplifier under CW operation. As a result, 21.7W output power under CW operation was successfully achieved with power added efficiency (PAE) of 19.8% at Ka-band by a single-ended MMIC. To the best of authors' knowledge, this output power is state-of-the-art for GaN MMIC amplifiers under CW operation at Ka-band.\",\"PeriodicalId\":129729,\"journal\":{\"name\":\"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICS.2017.8240422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2017.8240422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
摘要
本文报道了一种连续波工作下的20 W ka波段GaN大功率单片微波集成电路放大器。建立了考虑栅极馈线处射频栅极电压相位差和热效应的单指大信号模型。利用该模型,优化设计了单元晶体管的栅极间距长度,使其在连续波工作下作为MMIC放大器获得最大输出功率。结果表明,在连续波工作下,单端MMIC的输出功率为21.7W, ka波段的功率附加效率(PAE)为19.8%。据作者所知,这种输出功率对于ka波段连续波工作的GaN MMIC放大器来说是最先进的。
A CW 20W Ka-band GaN high power MMIC amplifier with a gate pitch designed by using one-finger large signal models
This paper reports a 20 W Ka-band GaN high power MMIC (Monolithic Microwave Integrated Circuit) amplifier under continuous wave (CW) operation. The one-finger large signal models were made to take account of both the phase difference of RF gate voltage at a gate feeder and thermal effect. By using this model, the gate pitch length of unit cell transistor was optimally designed to obtain maximum output power as MMIC amplifier under CW operation. As a result, 21.7W output power under CW operation was successfully achieved with power added efficiency (PAE) of 19.8% at Ka-band by a single-ended MMIC. To the best of authors' knowledge, this output power is state-of-the-art for GaN MMIC amplifiers under CW operation at Ka-band.