实现1.6 NEF和2.56 PEF的脑机接口低噪声神经信号放大器

Weijian Chen, Xu Liu, Weisong Liang, Ze-Xi Lu, Peiyuan Wan, Zhijie Chen
{"title":"实现1.6 NEF和2.56 PEF的脑机接口低噪声神经信号放大器","authors":"Weijian Chen, Xu Liu, Weisong Liang, Ze-Xi Lu, Peiyuan Wan, Zhijie Chen","doi":"10.1109/APCCAS55924.2022.10090394","DOIUrl":null,"url":null,"abstract":"This paper presents a low-power and low-noise front-end amplifier (FEA) dedicated to recording and preprocessing biomedical signals for brain-machine interface. The FEA employs a current-reused architecture which adopts an inverter-based differential input stage to achieve considerable $g_{m}/I$ efficiency and low noise. With a carefully designed common-mode feedback circuit, the output common-mode voltage of the fully-differential FEA is stabilized within an acceptable margin of error about 1 mV. All transistors in FEA operate in the sub-threshold region, realizing low power consumption. This current-reused FEA implemented in a CMOS 0.18- $\\mu \\mathbf{m}$ technology provides a noise efficiency factor (NEF) and power efficiency factor (PEF) of 1.6 and 2.56, respectively, corresponding to an input-referred noise of 2.37 $\\mu \\boldsymbol{V}_{rms}$. This FEA consumes only 2 $\\mu \\mathbf{A}$ current from 1 V supply and the active area is $0.2 \\ \\mathbf{mm} \\times 0.2$ mm.","PeriodicalId":243739,"journal":{"name":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Low-Noise Neural Signal Amplifier Achieving 1.6 NEF and 2.56 PEF for Brain-Machine Interface\",\"authors\":\"Weijian Chen, Xu Liu, Weisong Liang, Ze-Xi Lu, Peiyuan Wan, Zhijie Chen\",\"doi\":\"10.1109/APCCAS55924.2022.10090394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a low-power and low-noise front-end amplifier (FEA) dedicated to recording and preprocessing biomedical signals for brain-machine interface. The FEA employs a current-reused architecture which adopts an inverter-based differential input stage to achieve considerable $g_{m}/I$ efficiency and low noise. With a carefully designed common-mode feedback circuit, the output common-mode voltage of the fully-differential FEA is stabilized within an acceptable margin of error about 1 mV. All transistors in FEA operate in the sub-threshold region, realizing low power consumption. This current-reused FEA implemented in a CMOS 0.18- $\\\\mu \\\\mathbf{m}$ technology provides a noise efficiency factor (NEF) and power efficiency factor (PEF) of 1.6 and 2.56, respectively, corresponding to an input-referred noise of 2.37 $\\\\mu \\\\boldsymbol{V}_{rms}$. This FEA consumes only 2 $\\\\mu \\\\mathbf{A}$ current from 1 V supply and the active area is $0.2 \\\\ \\\\mathbf{mm} \\\\times 0.2$ mm.\",\"PeriodicalId\":243739,\"journal\":{\"name\":\"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS55924.2022.10090394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS55924.2022.10090394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于脑机接口生物医学信号记录和预处理的低功耗、低噪声前端放大器。FEA采用电流重用架构,采用基于逆变器的差分输入级,实现可观的$g_{m}/I$效率和低噪声。通过精心设计的共模反馈电路,全差分有限元分析的输出共模电压稳定在约1mv的可接受误差范围内。FEA中的所有晶体管都工作在亚阈值区域,实现了低功耗。该电流复用FEA采用CMOS 0.18- $\mu \mathbf{m}$技术实现,噪声效率因子(NEF)和功率效率因子(PEF)分别为1.6和2.56,对应于2.37 $\mu \boldsymbol{V}_{rms}$的输入参考噪声。该FEA仅消耗来自1 V电源的2$ \mu \mathbf{A}$电流,有效面积为$0.2 \ \mathbf{mm} \乘以0.2$ mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Low-Noise Neural Signal Amplifier Achieving 1.6 NEF and 2.56 PEF for Brain-Machine Interface
This paper presents a low-power and low-noise front-end amplifier (FEA) dedicated to recording and preprocessing biomedical signals for brain-machine interface. The FEA employs a current-reused architecture which adopts an inverter-based differential input stage to achieve considerable $g_{m}/I$ efficiency and low noise. With a carefully designed common-mode feedback circuit, the output common-mode voltage of the fully-differential FEA is stabilized within an acceptable margin of error about 1 mV. All transistors in FEA operate in the sub-threshold region, realizing low power consumption. This current-reused FEA implemented in a CMOS 0.18- $\mu \mathbf{m}$ technology provides a noise efficiency factor (NEF) and power efficiency factor (PEF) of 1.6 and 2.56, respectively, corresponding to an input-referred noise of 2.37 $\mu \boldsymbol{V}_{rms}$. This FEA consumes only 2 $\mu \mathbf{A}$ current from 1 V supply and the active area is $0.2 \ \mathbf{mm} \times 0.2$ mm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Energy-Efficient Mixed-Bit ReRAM-based Computing-in-Memory CNN Accelerator with Fully Parallel Readout An Eigen-decomposition Free Method for Computing Graph Fourier Transform Centrality A 60-GHz CMOS Balanced Power Amplifier with Miniaturized Quadrature Hybrids Achieving 19.0-dBm Output Power and 24.4% Peak PAE A Vector Pair Based DWA Algorithm for Linearity Enhancement of CDACs in the NS-SAR ADC Optimal Evasive Path Planning with Velocity Constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1