基于动态集成选择的改进随机森林工业过程故障分类

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS IFAC Journal of Systems and Control Pub Date : 2022-06-01 DOI:10.1016/j.ifacsc.2022.100189
Junhua Zheng , Yue Liu , Zhiqiang Ge
{"title":"基于动态集成选择的改进随机森林工业过程故障分类","authors":"Junhua Zheng ,&nbsp;Yue Liu ,&nbsp;Zhiqiang Ge","doi":"10.1016/j.ifacsc.2022.100189","DOIUrl":null,"url":null,"abstract":"<div><p><span>Fault classification is an important part in industrial process for process monitoring and control. As an ensemble learning approach for classification, </span>random forests<span> has been widely used in different areas. Taking into account the performance of individual decision tree, the diversity between trees and the difference between process data, a k nearest neighbors-hierarchical clustering (KNN-HC) method is proposed in this paper for dynamic ensemble selection (DES) in random forests. In addition, a weighted probability fusion strategy is developed as an alternative of majority voting rule. The experimental evaluation of the proposed method is carried out through the Tennessee Eastman (TE) benchmark process. Results show that the proposed method outperforms three conventional methods, the original random forests (RF) and the static selection based random forests.</span></p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"20 ","pages":"Article 100189"},"PeriodicalIF":1.8000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Dynamic ensemble selection based improved random forests for fault classification in industrial processes\",\"authors\":\"Junhua Zheng ,&nbsp;Yue Liu ,&nbsp;Zhiqiang Ge\",\"doi\":\"10.1016/j.ifacsc.2022.100189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Fault classification is an important part in industrial process for process monitoring and control. As an ensemble learning approach for classification, </span>random forests<span> has been widely used in different areas. Taking into account the performance of individual decision tree, the diversity between trees and the difference between process data, a k nearest neighbors-hierarchical clustering (KNN-HC) method is proposed in this paper for dynamic ensemble selection (DES) in random forests. In addition, a weighted probability fusion strategy is developed as an alternative of majority voting rule. The experimental evaluation of the proposed method is carried out through the Tennessee Eastman (TE) benchmark process. Results show that the proposed method outperforms three conventional methods, the original random forests (RF) and the static selection based random forests.</span></p></div>\",\"PeriodicalId\":29926,\"journal\":{\"name\":\"IFAC Journal of Systems and Control\",\"volume\":\"20 \",\"pages\":\"Article 100189\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Journal of Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468601822000049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601822000049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 11

摘要

故障分类是工业过程监控的重要组成部分。随机森林作为一种集成学习的分类方法,在不同领域得到了广泛的应用。考虑到个体决策树的性能、树之间的多样性和过程数据之间的差异性,提出了一种用于随机森林中动态集成选择(DES)的k近邻-层次聚类方法。此外,提出了一种加权概率融合策略,作为多数表决规则的替代方案。通过田纳西伊士曼(Tennessee Eastman, TE)基准过程对该方法进行了实验评估。结果表明,该方法优于原始随机森林和基于静态选择的随机森林三种传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic ensemble selection based improved random forests for fault classification in industrial processes

Fault classification is an important part in industrial process for process monitoring and control. As an ensemble learning approach for classification, random forests has been widely used in different areas. Taking into account the performance of individual decision tree, the diversity between trees and the difference between process data, a k nearest neighbors-hierarchical clustering (KNN-HC) method is proposed in this paper for dynamic ensemble selection (DES) in random forests. In addition, a weighted probability fusion strategy is developed as an alternative of majority voting rule. The experimental evaluation of the proposed method is carried out through the Tennessee Eastman (TE) benchmark process. Results show that the proposed method outperforms three conventional methods, the original random forests (RF) and the static selection based random forests.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
期刊最新文献
Finite-time boundedness of piecewise affine systems Plug-in module for controller reconfiguration based on latent variables and the Youla-Kucera parameterization Adaptation of fractional-order PI controller for a variable input interleaved DC–DC​ boost converter using particle swarm optimization with parametric variation Learning optimal safety certificates for unknown nonlinear control systems A sparse approach to transfer function estimation via Least Absolute Shrinkage and Selection Operator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1