{"title":"用电流纺丝减少多端子霍尔板的偏移量","authors":"J. Ramírez, F. Fruett","doi":"10.1109/IBERSENSOR.2014.6995556","DOIUrl":null,"url":null,"abstract":"The present work analyzes a four-terminal Hall-plate device to determine the main sources of error and explain how current-spinning technique can be used to effectively reduce offset and noise. Based on this analysis, an improved magnetic sensor is designed using an eight terminal octagonal Hall plate and a chopped-based control circuit to implement the current-spinning technique. Since Hall plates are complete compatible with the CMOS manufacturing process, a monolithic chip which contains the sensor, switches, digital control and bias circuit were fabricated using a 0.6 μm commercial CMOS process. These devices are used to test the offset cancellation methodology and compare if there are advantages related to the device orientation or switching sequence. Experimental results show a residual offset of 0.25 mT, a 99% reduction compared with the original offset level measured at Hall plate.","PeriodicalId":296271,"journal":{"name":"2014 IEEE 9th IberoAmerican Congress on Sensors","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Offset reduction in a multiple-terminal hall plate using current spinning\",\"authors\":\"J. Ramírez, F. Fruett\",\"doi\":\"10.1109/IBERSENSOR.2014.6995556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work analyzes a four-terminal Hall-plate device to determine the main sources of error and explain how current-spinning technique can be used to effectively reduce offset and noise. Based on this analysis, an improved magnetic sensor is designed using an eight terminal octagonal Hall plate and a chopped-based control circuit to implement the current-spinning technique. Since Hall plates are complete compatible with the CMOS manufacturing process, a monolithic chip which contains the sensor, switches, digital control and bias circuit were fabricated using a 0.6 μm commercial CMOS process. These devices are used to test the offset cancellation methodology and compare if there are advantages related to the device orientation or switching sequence. Experimental results show a residual offset of 0.25 mT, a 99% reduction compared with the original offset level measured at Hall plate.\",\"PeriodicalId\":296271,\"journal\":{\"name\":\"2014 IEEE 9th IberoAmerican Congress on Sensors\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 9th IberoAmerican Congress on Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IBERSENSOR.2014.6995556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 9th IberoAmerican Congress on Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBERSENSOR.2014.6995556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Offset reduction in a multiple-terminal hall plate using current spinning
The present work analyzes a four-terminal Hall-plate device to determine the main sources of error and explain how current-spinning technique can be used to effectively reduce offset and noise. Based on this analysis, an improved magnetic sensor is designed using an eight terminal octagonal Hall plate and a chopped-based control circuit to implement the current-spinning technique. Since Hall plates are complete compatible with the CMOS manufacturing process, a monolithic chip which contains the sensor, switches, digital control and bias circuit were fabricated using a 0.6 μm commercial CMOS process. These devices are used to test the offset cancellation methodology and compare if there are advantages related to the device orientation or switching sequence. Experimental results show a residual offset of 0.25 mT, a 99% reduction compared with the original offset level measured at Hall plate.