高速链路预测建模的机器学习技术比较

Hanzhi Ma, Erping Li, A. Cangellaris, Xu Chen
{"title":"高速链路预测建模的机器学习技术比较","authors":"Hanzhi Ma, Erping Li, A. Cangellaris, Xu Chen","doi":"10.1109/EPEPS47316.2019.193199","DOIUrl":null,"url":null,"abstract":"We compare three different machine learning techniques for constructing predictive model for eye opening based on channel length and interconnect cross-sectional geometry. Surrogate model is constructed using sparse grids, support vector regression, and artificial neural networks. Models for training data are generated using quasi-TEM modeling of the interconnect, and eye opening training data is obtained from statistical high-speed link simulation using IBIS-AMI transmitter and receiver models. Numerical results illustrate that all three methods offer reasonable predictions of eye height, eye width and eye width at 10−12 bit error rate.","PeriodicalId":304228,"journal":{"name":"2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","volume":"106 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Comparison of Machine Learning Techniques for Predictive Modeling of High-Speed Links\",\"authors\":\"Hanzhi Ma, Erping Li, A. Cangellaris, Xu Chen\",\"doi\":\"10.1109/EPEPS47316.2019.193199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compare three different machine learning techniques for constructing predictive model for eye opening based on channel length and interconnect cross-sectional geometry. Surrogate model is constructed using sparse grids, support vector regression, and artificial neural networks. Models for training data are generated using quasi-TEM modeling of the interconnect, and eye opening training data is obtained from statistical high-speed link simulation using IBIS-AMI transmitter and receiver models. Numerical results illustrate that all three methods offer reasonable predictions of eye height, eye width and eye width at 10−12 bit error rate.\",\"PeriodicalId\":304228,\"journal\":{\"name\":\"2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"volume\":\"106 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPS47316.2019.193199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS47316.2019.193199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们比较了三种不同的机器学习技术,用于构建基于通道长度和互连截面几何形状的睁眼预测模型。利用稀疏网格、支持向量回归和人工神经网络构建代理模型。训练数据模型采用互连准瞬变电磁法建模生成,开眼训练数据采用IBIS-AMI发射机和接收机模型进行统计高速链路仿真获得。数值结果表明,在10 ~ 12比特的误码率下,这三种方法都能合理地预测眼高、眼宽和眼宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Machine Learning Techniques for Predictive Modeling of High-Speed Links
We compare three different machine learning techniques for constructing predictive model for eye opening based on channel length and interconnect cross-sectional geometry. Surrogate model is constructed using sparse grids, support vector regression, and artificial neural networks. Models for training data are generated using quasi-TEM modeling of the interconnect, and eye opening training data is obtained from statistical high-speed link simulation using IBIS-AMI transmitter and receiver models. Numerical results illustrate that all three methods offer reasonable predictions of eye height, eye width and eye width at 10−12 bit error rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvement of Power and Signal Integrity through Layer Assignment in High-Speed Memory Systems Crosstalk Analysis in MWCNTs using a Closed-Form Matrix Rational Approximation Technique Processing-in-memory in High Bandwidth Memory (PIM-HBM) Architecture with Energy-efficient and Low Latency Channels for High Bandwidth System Moments-Based Sensitivity Analysis of X-Parameters with respect to Linear and Nonlinear Circuit Components Modeling Surface Roughness at DC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1