{"title":"复杂三维几何图形电容提取的快速多极子算法","authors":"K. Nabors, Jacob K. White","doi":"10.1109/CICC.1989.56806","DOIUrl":null,"url":null,"abstract":"A fast algorithm for computing the capacitance of a complicated 3-D geometry of ideal conductors in a uniform dielectric is described. The method is an acceleration of the standard integral-equation for multiconductor capacitance extraction. These integral-equation methods are slow because they lead to dense matrix problems which are typically solved with some form of Gaussian elimination. This implies that the computation grows like n3, where n is the number of tiles needed to accuracy-discretize the conductor surface charges. The authors present a preconditioned conjugate-gradient iterative algorithm with a multipole approximation to compute the iterates. This reduces the complexity so that accurate multiconductor capacitance calculations grow as nm, where m is the number of conductors","PeriodicalId":165054,"journal":{"name":"1989 Proceedings of the IEEE Custom Integrated Circuits Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A fast multipole algorithm for capacitance extraction of complex 3-D geometries\",\"authors\":\"K. Nabors, Jacob K. White\",\"doi\":\"10.1109/CICC.1989.56806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fast algorithm for computing the capacitance of a complicated 3-D geometry of ideal conductors in a uniform dielectric is described. The method is an acceleration of the standard integral-equation for multiconductor capacitance extraction. These integral-equation methods are slow because they lead to dense matrix problems which are typically solved with some form of Gaussian elimination. This implies that the computation grows like n3, where n is the number of tiles needed to accuracy-discretize the conductor surface charges. The authors present a preconditioned conjugate-gradient iterative algorithm with a multipole approximation to compute the iterates. This reduces the complexity so that accurate multiconductor capacitance calculations grow as nm, where m is the number of conductors\",\"PeriodicalId\":165054,\"journal\":{\"name\":\"1989 Proceedings of the IEEE Custom Integrated Circuits Conference\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1989 Proceedings of the IEEE Custom Integrated Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICC.1989.56806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1989 Proceedings of the IEEE Custom Integrated Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.1989.56806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fast multipole algorithm for capacitance extraction of complex 3-D geometries
A fast algorithm for computing the capacitance of a complicated 3-D geometry of ideal conductors in a uniform dielectric is described. The method is an acceleration of the standard integral-equation for multiconductor capacitance extraction. These integral-equation methods are slow because they lead to dense matrix problems which are typically solved with some form of Gaussian elimination. This implies that the computation grows like n3, where n is the number of tiles needed to accuracy-discretize the conductor surface charges. The authors present a preconditioned conjugate-gradient iterative algorithm with a multipole approximation to compute the iterates. This reduces the complexity so that accurate multiconductor capacitance calculations grow as nm, where m is the number of conductors