基于随机图像的视觉预测控制

S. Sajjadi, M. M. H. Fallah, M. Mehrandezh, F. Janabi-Sharifi
{"title":"基于随机图像的视觉预测控制","authors":"S. Sajjadi, M. M. H. Fallah, M. Mehrandezh, F. Janabi-Sharifi","doi":"10.1109/CASE49439.2021.9551441","DOIUrl":null,"url":null,"abstract":"Image-based visual predictive controllers have gained attention due to their optimality and constraint-handling capabilities. However, their performance deteriorates in presence of the modelling and measurement uncertainties. This paper presents a stochastic image-based visual predictive control method to overcome some shortcomings of the previous schemes cited in literature. In particular, the proposed approach provides a systematic solution to address the image-based constraint compliance in presence of the measurement and modelling uncertainties. The proposed method was implemented on a 6-DOF Denso robot via simulation.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"151 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stochastic Image-based Visual Predictive Control\",\"authors\":\"S. Sajjadi, M. M. H. Fallah, M. Mehrandezh, F. Janabi-Sharifi\",\"doi\":\"10.1109/CASE49439.2021.9551441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image-based visual predictive controllers have gained attention due to their optimality and constraint-handling capabilities. However, their performance deteriorates in presence of the modelling and measurement uncertainties. This paper presents a stochastic image-based visual predictive control method to overcome some shortcomings of the previous schemes cited in literature. In particular, the proposed approach provides a systematic solution to address the image-based constraint compliance in presence of the measurement and modelling uncertainties. The proposed method was implemented on a 6-DOF Denso robot via simulation.\",\"PeriodicalId\":232083,\"journal\":{\"name\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"151 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE49439.2021.9551441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于图像的可视预测控制器因其最优性和约束处理能力而备受关注。然而,在存在建模和测量不确定性的情况下,它们的性能会下降。本文提出了一种基于随机图像的可视化预测控制方法,以克服以往文献中提到的方案的一些缺点。特别是,所提出的方法提供了一个系统的解决方案,以解决在存在测量和建模不确定性的情况下基于图像的约束合规性问题。通过模拟,在一个 6-DOF Denso 机器人上实现了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stochastic Image-based Visual Predictive Control
Image-based visual predictive controllers have gained attention due to their optimality and constraint-handling capabilities. However, their performance deteriorates in presence of the modelling and measurement uncertainties. This paper presents a stochastic image-based visual predictive control method to overcome some shortcomings of the previous schemes cited in literature. In particular, the proposed approach provides a systematic solution to address the image-based constraint compliance in presence of the measurement and modelling uncertainties. The proposed method was implemented on a 6-DOF Denso robot via simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planar Pushing of Unknown Objects Using a Large-Scale Simulation Dataset and Few-Shot Learning A configurator for supervisory controllers of roadside systems Maintaining Connectivity in Multi-Rover Networks for Lunar Exploration Missions VLC-SE: Visual-Lengthwise Configuration Self-Estimator of Continuum Robots Multi-zone indoor temperature prediction based on Graph Attention Network and Gated Recurrent Unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1