H. Ra, Y. Taguchi, D. Lee, W. Piyawattanametha, O. Solgaard
{"title":"用于双轴共聚焦体内显微镜的二维MEMS扫描仪","authors":"H. Ra, Y. Taguchi, D. Lee, W. Piyawattanametha, O. Solgaard","doi":"10.1109/MEMSYS.2006.1627936","DOIUrl":null,"url":null,"abstract":"This paper presents a two-dimensional (2-D) MicroElectroMechanical system (MEMS) scanner that enables dual-axes confocal microscopy. Dual-axes confocal microscopy provides high resolution in both transverse and axial directions, and is also well-suited for miniaturization and integration into endoscopes for in vivo imaging. A gimbaled MEMS scanner is fabricated on a double silicon-on-insulator (SOI) wafer (a silicon wafer bonded on a SOI wafer) and is actuated by self-aligned, vertical, electrostatic combdrives. The imaging capability of the MEMS mirror is successfully demonstrated in a breadboard setup. Reflectance images with a field of view (FOV) of 344 μm × 417 μm are achieved at 8 frames per second. The transverse resolution is 3.94 μm and 6.68 μm for the horizontal and vertical dimensions, respectively.","PeriodicalId":250831,"journal":{"name":"19th IEEE International Conference on Micro Electro Mechanical Systems","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Two-Dimensional MEMS Scanner for Dual-Axes Confocal in Vivo Microscopy\",\"authors\":\"H. Ra, Y. Taguchi, D. Lee, W. Piyawattanametha, O. Solgaard\",\"doi\":\"10.1109/MEMSYS.2006.1627936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a two-dimensional (2-D) MicroElectroMechanical system (MEMS) scanner that enables dual-axes confocal microscopy. Dual-axes confocal microscopy provides high resolution in both transverse and axial directions, and is also well-suited for miniaturization and integration into endoscopes for in vivo imaging. A gimbaled MEMS scanner is fabricated on a double silicon-on-insulator (SOI) wafer (a silicon wafer bonded on a SOI wafer) and is actuated by self-aligned, vertical, electrostatic combdrives. The imaging capability of the MEMS mirror is successfully demonstrated in a breadboard setup. Reflectance images with a field of view (FOV) of 344 μm × 417 μm are achieved at 8 frames per second. The transverse resolution is 3.94 μm and 6.68 μm for the horizontal and vertical dimensions, respectively.\",\"PeriodicalId\":250831,\"journal\":{\"name\":\"19th IEEE International Conference on Micro Electro Mechanical Systems\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"19th IEEE International Conference on Micro Electro Mechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2006.1627936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th IEEE International Conference on Micro Electro Mechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2006.1627936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two-Dimensional MEMS Scanner for Dual-Axes Confocal in Vivo Microscopy
This paper presents a two-dimensional (2-D) MicroElectroMechanical system (MEMS) scanner that enables dual-axes confocal microscopy. Dual-axes confocal microscopy provides high resolution in both transverse and axial directions, and is also well-suited for miniaturization and integration into endoscopes for in vivo imaging. A gimbaled MEMS scanner is fabricated on a double silicon-on-insulator (SOI) wafer (a silicon wafer bonded on a SOI wafer) and is actuated by self-aligned, vertical, electrostatic combdrives. The imaging capability of the MEMS mirror is successfully demonstrated in a breadboard setup. Reflectance images with a field of view (FOV) of 344 μm × 417 μm are achieved at 8 frames per second. The transverse resolution is 3.94 μm and 6.68 μm for the horizontal and vertical dimensions, respectively.