无直接距离测量的类独轮车分布式编队控制

Liang Liu, Xiaopeng Luo, Zhangqing Zhu
{"title":"无直接距离测量的类独轮车分布式编队控制","authors":"Liang Liu, Xiaopeng Luo, Zhangqing Zhu","doi":"10.1109/ICNSC48988.2020.9238078","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the distributed formation control law to drive a group of unicycle-like vehicles to converge to a formation with a same orientation. The vehicles do not rely on a global coordinate frame. The network of the vehicles forms an acyclic digraph with no directed loops. We design the control law for vehicles without using position or direct distance measurements. Then we analyze the convergence and the properties of the closed-loop system. Finally, our simulation results certify the effectiveness of the proposed control laws.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Formation Control of Unicycle-Like Vehicles Without Direct Distance Measurements\",\"authors\":\"Liang Liu, Xiaopeng Luo, Zhangqing Zhu\",\"doi\":\"10.1109/ICNSC48988.2020.9238078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose the distributed formation control law to drive a group of unicycle-like vehicles to converge to a formation with a same orientation. The vehicles do not rely on a global coordinate frame. The network of the vehicles forms an acyclic digraph with no directed loops. We design the control law for vehicles without using position or direct distance measurements. Then we analyze the convergence and the properties of the closed-loop system. Finally, our simulation results certify the effectiveness of the proposed control laws.\",\"PeriodicalId\":412290,\"journal\":{\"name\":\"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"168 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC48988.2020.9238078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了分布式编队控制律,以驱动一组单轮车收敛到具有相同方向的编队。车辆不依赖于全局坐标系。车辆网络形成无有向环路的无环有向图。我们设计了不使用位置或直接距离测量的车辆控制律。然后分析了闭环系统的收敛性和性质。最后,仿真结果验证了所提控制律的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed Formation Control of Unicycle-Like Vehicles Without Direct Distance Measurements
In this paper, we propose the distributed formation control law to drive a group of unicycle-like vehicles to converge to a formation with a same orientation. The vehicles do not rely on a global coordinate frame. The network of the vehicles forms an acyclic digraph with no directed loops. We design the control law for vehicles without using position or direct distance measurements. Then we analyze the convergence and the properties of the closed-loop system. Finally, our simulation results certify the effectiveness of the proposed control laws.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Deep Multiple-input and Single-output PointNet for 3D Model Retrieval A Reinforcement Learning Based Medium Access Control Method for LoRa Networks A Novel Reinforcement-Learning-Based Approach to Scientific Workflow Scheduling Accelerated Latent Factor Analysis for Recommender Systems via PID Controller A Diverse Biases Non-negative Latent Factorization of Tensors Model for Dynamic Network Link Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1