非凸集的密度敏感聚类算法研究

Liwen Song, Jiahui Qi, Min Wu
{"title":"非凸集的密度敏感聚类算法研究","authors":"Liwen Song, Jiahui Qi, Min Wu","doi":"10.2991/ICMEIT-19.2019.129","DOIUrl":null,"url":null,"abstract":"Abstract. Applying Clustering to non-convex data is a challenging task, and traditional clustering algorithms often fail to achieve good results. In this paper, an improved spectral clustering algorithm based on density sensitivity (DSISC algorithm) is proposed. By using the ensemble selection strategy for the mean shift algorithm, relatively good optional clusters are selected from the nonconvex data sets, and then the number of clusters is transported into the spectral clustering algorithm as input, and the density-sensitive distance is used as the similarity measure. The experimental results give us clear information that the DSISC is better than traditional mean shift algorithm and spectral clustering algorithms in normalized mutual information clustering error rate.","PeriodicalId":223458,"journal":{"name":"Proceedings of the 3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Density Sensitive Clustering Algorithm for Non-convex Sets\",\"authors\":\"Liwen Song, Jiahui Qi, Min Wu\",\"doi\":\"10.2991/ICMEIT-19.2019.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Applying Clustering to non-convex data is a challenging task, and traditional clustering algorithms often fail to achieve good results. In this paper, an improved spectral clustering algorithm based on density sensitivity (DSISC algorithm) is proposed. By using the ensemble selection strategy for the mean shift algorithm, relatively good optional clusters are selected from the nonconvex data sets, and then the number of clusters is transported into the spectral clustering algorithm as input, and the density-sensitive distance is used as the similarity measure. The experimental results give us clear information that the DSISC is better than traditional mean shift algorithm and spectral clustering algorithms in normalized mutual information clustering error rate.\",\"PeriodicalId\":223458,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/ICMEIT-19.2019.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ICMEIT-19.2019.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要将聚类应用于非凸数据是一项具有挑战性的任务,传统的聚类算法往往不能达到很好的效果。提出了一种改进的基于密度灵敏度的谱聚类算法(DSISC算法)。采用均值漂移算法的集合选择策略,从非凸数据集中选择相对较好的可选聚类,然后将聚类数量作为输入传递到谱聚类算法中,并以密度敏感距离作为相似度度量。实验结果表明,DSISC在归一化互信息聚类错误率方面优于传统的均值移位算法和谱聚类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Density Sensitive Clustering Algorithm for Non-convex Sets
Abstract. Applying Clustering to non-convex data is a challenging task, and traditional clustering algorithms often fail to achieve good results. In this paper, an improved spectral clustering algorithm based on density sensitivity (DSISC algorithm) is proposed. By using the ensemble selection strategy for the mean shift algorithm, relatively good optional clusters are selected from the nonconvex data sets, and then the number of clusters is transported into the spectral clustering algorithm as input, and the density-sensitive distance is used as the similarity measure. The experimental results give us clear information that the DSISC is better than traditional mean shift algorithm and spectral clustering algorithms in normalized mutual information clustering error rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Feedback-Based Scheduling for Load-Balanced Crosspoint Buffered Crossbar Switches Research on Traffic Congestion Resolution Mechanism based on Genetic Algorithm and Multi-Agent Decentralized Location Privacy Protection Method of Offset Grid Real-Time Bidding by Proportional Control in Display Advertising Simulation Analysis of Friction and Wear of New TiAl based Alloy Joint Bearings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1